184 research outputs found

    Exclusive ϕ\phi production in proton-proton collisions in the resonance model

    Full text link
    The exclusive ϕ\phi meson production in proton-proton reactions is calculated within the resonance model. The considered model was already successfully applied to the description of π\pi, η\eta, ρ\rho, ω\omega, ππ\pi\pi production in proton-proton collisions. The only new parameter entering into the model is the ωϕ\omega-\phi mixing angle θmix\theta_{mix} which is taken equal to θmix3.7o\theta_{mix} \approx 3.7^o.Comment: 7 pages, 1 figure, to appear in the brief report section of PR

    Pionic atoms probing pi-NN resonances

    Full text link
    The pion optical potential generated by the hypothetical pi-NN-coupled NN-decoupled dibaryon resonance d'(2065) is calculated to the lowest order in nuclear matter density. The contribution to the pion optical potential is found to be within the empirical errors, so the d'(2065) existence currently does not contradict to the observed properties of the pi-nucleus bound states. Future progress in the pionic X-ray spectroscopy can reveal contributions of pi-NN resonances to energy levels and widths of the pionic atoms.Comment: 3 pages REVTEX, 1 ps figur

    On the stability of Dirac sheet configurations

    Full text link
    Using cooling for SU(2) lattice configurations, purely Abelian constant magnetic field configurations were left over after the annihilation of constituents that formed metastable Q=0 configurations. These so-called Dirac sheet configurations were found to be stable if emerging from the confined phase, close to the deconfinement phase transition, provided their Polyakov loop was sufficiently non-trivial. Here we show how this is related to the notion of marginal stability of the appropriate constant magnetic field configurations. We find a perfect agreement between the analytic prediction for the dependence of stability on the value of the Polyakov loop (the holonomy) in a finite volume and the numerical results studied on a finite lattice in the context of the Dirac sheet configurations

    Dilepton production in proton-proton collisions at BEVALAC energies

    Full text link
    The dilepton production in elementary ppe+eX{pp\to e^{+}e^{-}X} reactions at BEVALAC energies Tlab=1÷5T_{lab}=1\div 5 GeV is investigated. The calculations include direct e+e{e^{+}e^{-}} decays of the vector mesons ρ0\rho ^{0}, ω\omega , and ϕ\phi , Dalitz decays of the π0\pi ^{0}-, η\eta -, % \rho -, ω\omega -, and ϕ\phi -mesons, and of the baryon resonances % \Delta (1232),N(1520), ...... . The subthreshold vector meson production cross sections in pppp collisions are treated in a way sufficient to avoid double counting with the inclusive vector meson production. The vector meson dominance model for the transition form factors of the resonance Dalitz decays Re+eNR\to e^{+}e^{-}N is used in an extended form to ensure correct asymptotics which are in agreement with the quark counting rules. Such a modification gives an unified and consistent description of both RNγR\to N\gamma radiative decays and RNρ(ω)R\to N\rho (\omega) meson decays. The effect of multiple pion production on the experimental efficiency for the detection of the dilepton pairs is studied. We find the dilepton yield in reasonable agreement with the experimental data for the set of intermediate energies whereas at the highest energy Tlab=4.88T_{lab}=4.88 GeV the number of dilepton pairs is likely to be overestimated experimentally in the mass range M=300÷700M=300\div 700 MeV.Comment: 25 pages (IOP style), 5 figures, revised manuscript accepted for publication in JP

    Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum

    Get PDF
    A qualitative mechanism for the emergence of domain structured background gluon fields due to singularities in gauge field configurations is considered, and a model displaying a type of mean field approximation to the QCD partition function based on this mechanism is formulated. Estimation of the vacuum parameters (gluon condensate, topological susceptibility, string constant and quark condensate) indicates that domain-like structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous breakdown of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus describe confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added [1,2,4,5] and minor formulae corrected for typographical error
    corecore