572 research outputs found

    Monitoring the heterogeneity in single cell responses to drugs using electrochemical impedance and electrochemical noise

    Full text link
    Impedance spectroscopy is a widely used technique for monitoring cell-surface interactions and morphological changes, typically based on averaged signals from thousands of cells. However, acquiring impedance data at the single cell level, can potentially reveal cell-to-cell heterogeneity for example in response to chemotherapeutic agents such as doxorubicin. Here, we present a generic platform where light is used to define and localize the electroactive area, thus enabling the impedance measurements for selected single cells. We firstly tested the platform to assess phenotypic changes in breast cancer cells, at the single cell level, using the change in the cell impedance. We next show that changes in electrochemical noise reflects instantaneous responses of the cells to drugs, prior to any phenotypical changes. We used doxorubicin and monensin as model drugs and found that both drug influx and efflux events affect the impedance noise signals. Finally, we show how the electrochemical noise signal can be combined with fluorescence microscopy, to show that the noise provides information on cell susceptibility and resistance to drugs at the single cell level. Together the combination of electrochemical impedance and electrochemical noise with fluorescence microscopy provides a unique approach to understanding the heterogeneity in the response of single cells to stimuli where there is not phenotypic change

    Spin Wave Diffraction and Perfect Imaging of a Grating

    Full text link
    We study the diffraction of Damon-Eshbach-type spin waves incident on a one-dimensional grating realized by micro slits in a thin permalloy film. By means of time-resolved scanning Kerr microscopy we observe unique diffraction patterns behind the grating which exhibit replications of the spin-wave field at the slits. We show that these spin-wave images, with details finer than the wavelength of the incident Damon-Eshbach spin wavelength, arise from the strongly anisotropic spin wave dispersion.Comment: 5 pages, 3 figure

    Experiment and simulations of kinetic instabilities in mirror-confined ECR discharge plasma

    Get PDF
    Non-Maxwellian electron distribution functions give rise to a rich variety of kinetic instabilities, such as streaming instability, Weibel instability, and electrostatic and electromagnetic cyclotron instabilities. Electron ring-like distributions are ubiquitous in space plasmas and also occur in mirror-confined plasma where the loss-cone cuts a 'hole' in the distribution function. We report recent observations and simulations of instabilities in mirror-confined ECR discharge plasma [1], where excitation on harmonics and half-harmonics of the electron cyclotron frequency have been observed. The relevance to space plasma are also discussed where similar observations by satellites are common [2,3]. Theory and simulations show that electrostatic instabilities take place where two electron Bernstein modes merge [4]. Electromagnetic Vlasov simulations also show the coupling between electrostatic and electromagnetic electron Bernstein modes leading to instabilities near cyclotron harmonics

    Microwave emission due to kinetic instabilities in an over-dense mirror-confined plasma

    Get PDF
    The kinetic instabilities of a microwave plasma confined in an open magnetic trap are relevant to understanding various types of radio emission in space plasma, for example, in the magnetospheres of the Earth and the planets, the Sun, and certain types of stars. The high efficiency of the kinetic wave generation mechanism is due to the low group velocity of plasma waves (in comparison with electromagnetic waves), which ensures they enjoy an extended interaction time with nonequilibrium particles resulting in a high integral gain. Emission from the plasma is observed due to various mechanisms for the transformation of plasma waves into electromagnetic waves, for example, as a result of scattering by thermal ions. In view of the universality of the physical mechanisms of radiation generation, essential aspects of natural systems can be reproduced in laboratory magnetic traps under controlled and reproducible conditions. Hitherto the excitation of plasma waves in open magnetic traps has been carried out with the use of electron beams. The technique reported here exploits a plasma generated by irradiating a mirror confined plasma using mm-waves from a gyrotron under electron-cyclotron resonance conditions, a technique also potentially of interest for technological applications. In such a discharge, a two-component plasma is created with a dense cold (background) fraction with an isotropic particle velocity distribution and a less dense high-energy fraction of nonequilibrium electrons with an anisotropic distribution function. In these experiments, bursts of powerful electromagnetic radiation at a frequency close to the upper hybrid resonance and to the second harmonic of the electron gyrofrequency were observed for the first time, accompanied by synchronous precipitation of fast electrons from the trap. The observed bursts were associated with the instability of plasma waves under conditions of a double plasma resonance, with subsequent transformation of the plasma waves into electromagnetic waves. This poster focuses on a theoretical and experimental study of wave generation in a dense magnetoactive plasma at the harmonics of the electron gyrofrequency. In the experiments at the IAP RAS, a detailed study of the fine structure of dynamic spectra using ultra-wideband oscilloscopes with a bandwidth of up to 59 GHz is reported. Theoretical and numerical analysis at relevant plasma parameters is underway at the University of Strathclyde. Comparison of experimental and theoretical data will lead to an understanding of the mechanisms of electromagnetic radiation generation in magnetic traps and the features of the radio emission spectra observed in natural conditions

    EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer

    Get PDF
    Ernest Moles,1– 4 David W Chang,1– 3 Friederike M Mansfeld,1– 3 Alastair Duly,1,2 Kathleen Kimpton,1 Amy Logan,1– 4 Christopher B Howard,5 Kristofer J Thurecht,5,6 Maria Kavallaris1– 4 1Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia; 2UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia; 3School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia; 4UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia; 5Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia; 6Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD, 4072, AustraliaCorrespondence: Ernest Moles; Maria Kavallaris, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia, Email [email protected]; [email protected]: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site.Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model.Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart.Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC. Keywords: targeted drug delivery, bispecific antibodies, PEGylated liposomal doxorubicin, EGFR targeting, non-small cell lung cance

    Galvanically enhanced fretting-crevice corrosion of cemented femoral stems

    Get PDF
    The Ultima TPS MoM THR was designed and developed as a 2nd generation MoM THR specifically aimed at younger more active patients due to the anticipated low wear rates and increased longevity of MoM THRs. In 2010, published clinical data highlighted the early failure of the Ultima TPS MoM due to fretting-crevice corrosion at the stem-cement interface. Since 2010 similar observations have been reported by other clinical centres implicating competitor products as well as the Ultima TPS MoM THR. In an attempt to replicate the electrochemical reaction and interactions established across MoM THR systems, fretting-crevice corrosion tests subjected to galvanic coupling were conducted. Galvanic coupling was seen to significantly increase the rates of corrosion under static and dynamic conditions. This was due to the large potential differences developed across the system between active and passive areas, increasing the rates of corrosion and metallic ion release from the stem-cement interface

    Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.</p> <p>Methods</p> <p>We adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.</p> <p>Results</p> <p>From meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10<sup>-10</sup>) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.</p> <p>Conclusions</p> <p>We show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.</p

    ALADIN is Required for the Production of Fertile Mouse Oocytes

    Get PDF
    Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions
    • 

    corecore