602 research outputs found

    Lateral Eye Movements Do Not Increase False-Memory Rates: A Failed Direct-Replication Study

    Get PDF
    In this direct replication of Houben, Otgaar, Roelofs, and Merckelbach (Clinical Psychological Science, 6, 610–616, 2018), we tested whether making eye movements during memory recall increases susceptibility to creating false memories. Undergraduates (N = 206) watched a video of a car crash, after which they recalled the video with or without simultaneously making eye movements. Next, participants received misinformation about the video. Finally, during the critical test, they were questioned about video details. The results showed that making eye movements did not increase endorsement of misinformation (i.e., false memory), nor did it reduce (correct) memory details or memory vividness and emotionality. Random variation in sampling or measurement, low reliability of the test instrument, and observer-expectancy effects may explain discrepancies between study effects. Only multiple direct replications by different (independent) laboratories with standardized instruments will allow for assessing whether the effect is robust and largely independent of random variation and moderators

    An Euler Solver Based on Locally Adaptive Discrete Velocities

    Full text link
    A new discrete-velocity model is presented to solve the three-dimensional Euler equations. The velocities in the model are of an adaptive nature---both the origin of the discrete-velocity space and the magnitudes of the discrete-velocities are dependent on the local flow--- and are used in a finite volume context. The numerical implementation of the model follows the near-equilibrium flow method of Nadiga and Pullin [1] and results in a scheme which is second order in space (in the smooth regions and between first and second order at discontinuities) and second order in time. (The three-dimensional code is included.) For one choice of the scaling between the magnitude of the discrete-velocities and the local internal energy of the flow, the method reduces to a flux-splitting scheme based on characteristics. As a preliminary exercise, the result of the Sod shock-tube simulation is compared to the exact solution.Comment: 17 pages including 2 figures and CMFortran code listing. All in one postscript file (adv.ps) compressed and uuencoded (adv.uu). Name mail file `adv.uu'. Edit so that `#!/bin/csh -f' is the first line of adv.uu On a unix machine say `csh adv.uu'. On a non-unix machine: uudecode adv.uu; uncompress adv.tar.Z; tar -xvf adv.ta

    Three-Dimensional Simulations of Jets from Keplerian Disks: Self--Regulatory Stability

    Full text link
    We present the extension of previous two-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks, to three dimensions. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. The 3-D results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfv\'en surface of the outflow. Beyond the Alfv\'en surface however, the jet in 3-D becomes unstable to non-axisymmetric, Kelvin-Helmholtz instabilities. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfv\'enic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfv\'en speed is sufficiently high to reduce the average jet Alfv\'enic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m \ge 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfv\'en speed, and thus reducing the Alfv\'enic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew, or wobbling types of geometries in this relatively stable end-state, depending on the nature of the perturbations upon them. Finally, we suggest that jets go into alternating periods of low and high activity as the disappearance of unstable modes in the sub-Alfv\'enic regime enables another cycle of acceleration to super-Alfv\'enic speeds.Comment: 57 pages, 22 figures, submitted to Ap

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Gemini GMOS/IFU spectroscopy of NGC 1569 - II: Mapping the roots of the galactic outflow

    Full text link
    We present a set of four Gemini-North GMOS/IFU observations of the central disturbed regions of the dwarf irregular starburst galaxy NGC 1569, surrounding the well-known super star clusters A and B. This continues on directly from a companion paper, in which we describe the data reduction and analysis techniques employed and present the analysis of one of the IFU pointings. By decomposing the emission line profiles across the IFU fields, we map out the properties of each individual component identified and identify a number of relationships and correlations that allow us to investigate in detail the state of the ionized ISM. Our observations support and expand on the main findings from the analysis of the first IFU position, where we conclude that a broad (< 400 km/s) component underlying the bright nebular emission lines is produced in a turbulent mixing layer on the surface of cool gas knots, set up by the impact of the fast-flowing cluster winds. We discuss the kinematic, electron density and excitation maps of each region in detail and compare our results to previous studies. Our analysis reveals a very complex environment with many overlapping and superimposed components, including dissolving gas knots, rapidly expanding shocked shells and embedded ionizing sources, but no evidence for organised bulk motions. We conclude that the four IFU positions presented here lie well within the starburst region where energy is injected, and, from the lack of substantial ordered gas flows, within the quasi-hydrostatic zone of the wind interior to the sonic point. The net outflow occurs at radii beyond 100-200 pc, but our data imply that mass-loading of the hot ISM is active even at the roots of the wind.Comment: 21 pages, 23 figures, 3 tables. Accepted for publication in MNRA

    The Possibility of Thermal Instability in Early-Type Stars Due to Alfven Waves

    Full text link
    It was shown by dos Santos et al. the importance of Alfv\'en waves to explain the winds of Wolf-Rayet stars. We investigate here the possible importance of Alfv\'en waves in the creation of inhomogeneities in the winds of early-type stars. The observed infrared emission (at the base of the wind) of early-type stars is often larger than expected. The clumping explains this characteristic in the wind, increasing the mean density and hence the emission measure, making possible to understand the observed infrared, as well as the observed enhancement in the blue wing of the HαH_\alpha line. In this study, we investigate the formation of these clumps a via thermal instability. The heat-loss function used, H(T,n)H(T,n), includes physical processes such as: emission of (continuous and line) recombination radiation; resonance line emission excited by electron collisions; thermal bremsstrahlung; Compton heating and cooling; and damping of Alfv\'en waves. As a result of this heat-loss function we show the existence of two stable equilibrium regions. The stable equilibrium region at high temperature is the diffuse medium and at low temperature the clumps. Using this reasonable heat-loss function, we show that the two stable equilibrium regions can coexist over a narrow range of pressures describing the diffuse medium and the clumps.Comment: 21 pages (psfig.sty), 5 figures (included), ApJ accepted. Also available at http://www.iagusp.usp.br/preprints/preprint.htm
    corecore