9 research outputs found

    Detection of Masquerade Attacks using Data-Driven Semi-Global Alignment Approach

    Get PDF
    The broad utilization of virtualization in representing security basis conveys unrivaled security worries for inhabitants or clients and presents an extra layer that itself must be totally arranged and secured. Gatecrashers can abuse the extensive measure of assets for their attacks. This venture talks about two methodologies .In the initial three elements to be specific continuous attacks, autonomic counteractive action activities and hazard measure are incorporated to our Autonomic Intrusion Detection Framework (AIDF) as the majority of the present security advancements don't give the fundamental security components to frameworks, for example, early notices about future progressing attacks, autonomic avoidance activities and hazard measure. Accordingly, the controller can take proactive restorative activities before the attacks represent a genuine security hazard to the framework. In another Attack Sequence Detection (ASD) approach as assignments from various clients might be performed on a similar machine. In this way, one essential security concern is whether client information is secure in. Then again, programmer may encourage processing to dispatch bigger scope of attack. For example, a demand of port output in with numerous virtual machines executing such vindictive activity. In, for instance, avoiding a simple to adventure machine and afterward utilizing the past traded off to attack the objective. Such attack plan might be stealthy or inside the registering condition. So intrusion detection framework or firewall experiences issues to recognize it

    Probing defect states in few-layer MoS2 by conductance fluctuation spectroscopy

    No full text
    Despite the concerted effort of several research groups, a detailed experimental account of defect dynamics in high-quality single-and few-layer transition-metal dichalcogenides remains elusive. In this paper we report an experimental study of the temperature dependence of conductance and conductance fluctuations on few-layer MoS2 exfoliated on hexagonal boron nitride and covered by a capping layer of high-kappa dielectric HfO2. The presence of the high-kappa dielectric made the device extremely stable against environmental degradation as well as resistant to changes in device characteristics upon repeated thermal cycling, enabling us to obtain reproducible data on the same device over a timescale of more than 1 year. Our device architecture helped bring down the conductance fluctuations of the MoS2 channel by orders of magnitude compared to previous reports. The extremely low noise levels in our devices made it possible to detect the generation-recombination noise arising from charge fluctuation between the sulfur-vacancy levels in the band gap and energy levels at the conductance band edge. Our work establishes conduction fluctuation spectroscopy as a viable route to quantitatively probe in-gap defect levels in low-dimensional semiconductors

    Mixed boron(III) and phosphorous(V) complexes of meso-triaryl 25-oxasmaragdyrins

    No full text
    Two unprecedented mixed BIII/PV complexes of meso-triaryl 25-oxasmaragdyrins were synthesized in appreciable yields under mild reaction conditions. These unusual 25-oxasmaragdyrin complexes containing one or two seven-membered heterocyclic rings comprised of five different atoms (B, C, N, O and P) were prepared by reacting B(OH)(Ph)-smaragdyrin and B(OH)2-smaragdyrin complexes, respectively, with POCl3 in toluene at reflux temperature. The products were characterized by HRMS and 1D- and 2D-NMR spectroscopy. X-ray crystallography of one of the mixed BIII/PV smaragdyrin complexes indicated that the macrocycle is significantly distorted and contains a stable seven-membered heterocyclic ring within the macrocycle. The bands in the absorption and emission spectra were bathochromically shifted with reduced quantum yields and singlet-state lifetimes relative to the free base, meso-triaryl 25-oxasmaragdyrin. The mixed BIII/PV complexes were difficult to oxidize but easier to reduce than the free base. The DFT-optimized structure of the 25-oxasmaragdyrin complex with two seven-membered heterocycles indicated that it was a bicyclic spiro compound with two half-chair-like conformers. This was in contrast to the chair-like conformation of the complex with a single seven-membered heterocyclic ring. Moreover, incorporation of a second phosphate group in the former case stabilized the bonding geometry and resulted in higher stability, which was reflected in the bathochromic shift of the absorption spectra, more-positive oxidation potential and less-negative reduction potential

    Stacking angle dependent multiple excitonic resonances in bilayer tungsten diselenide

    No full text
    We report on multiple excitonic resonances in bilayer tungsten diselenide (BL-WSe2) stacked at different angles and demonstrate the use of the stacking angle to control the occurrence of these excitations. BL-WSe2 with different stacking angles were fabricated by stacking chemical vapour deposited monolayers and analysed using photoluminescence measurements in the temperature range 300–100 K. At reduced temperatures, several excitonic features were observed and the occurrences of these exitonic resonances were found to be stacking angle dependent. Our results indicate that by controlling the stacking angle, it is possible to excite or quench higher order excitations to tune the excitonic flux in optoelectronic devices. We attribute the presence/absence of multiple higher order excitons to the strength of interlayer coupling and doping effect from SiO2/Si substrate. Understanding interlayer excitations will help in engineering excitonic devices and give an insight into the physics of many-body dynamics

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-
    corecore