6,004 research outputs found
Impact of the various spin and orbital ordering processes on multiferroic properties of orthovanadate DyVO3
The orthovanadate DyVO3 crystal, known to exhibit multiple structural, spin
and orbital ordering transitions, is presently investigated on the basis of
magnetization, heat capacity, resistivity, dielectric and polarization
measurements. Our main result is experimental evidence for the existence of
multiferroicity below a high TC of 108 K over a wide temperature range
including different spin-orbital ordered states. The onset of ferroelectricity
is found to coincide with the antiferromagnetic C-type spin ordering transition
taking place at 108 K, which indicates that DyVO3 belongs to type II
multiferroics exhibiting a coupling between magnetism and ferroelectricity.
Some anomalies detected on the temperature dependence of electric polarization
are discussed with respect to the nature of the spin-orbital ordered states of
the V sublattice and the degree of spin alignment in the Dy sublattice. The
orthovanadates RVO3 (R = rare earth or Y) form an important new category for
searching for high-TC multiferroics.Comment: 25 pages, 7 figures, 68 references, one supplementary material,
Physical Review B, Published 23 July 201
Resonant Subband Landau Level Coupling in Symmetric Quantum Well
Subband structure and depolarization shifts in an ultra-high mobility
GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared
spectroscopy via resonant subband Landau level coupling. Resonant couplings
between the 1st and up to the 4th subbands are identified by well-separated
anti-level-crossing split resonance, while the hy-lying subbands were
identified by the cyclotron resonance linewidth broadening in the literature.
In addition, a forbidden intersubband transition (1st to 3rd) has been
observed. With the precise determination of the subband structure, we find that
the depolarization shift can be well described by the semiclassical slab plasma
model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure
Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(001) surface: First principles calculations
Recent ab intio studies of the magnetic properties of all 3d transition
metal(TM) freestanding atomic chains predicted that these nanowires could have
a giant magnetic anisotropy energy (MAE) and might support a spin-spiral
structure, thereby suggesting that these nanowires would have technological
applicationsin, e.g., high density magnetic data storages. In order to
investigate how the substrates may affect the magnetic properties of the
nanowires, here we systematically study the V, Cr and Mn linear atomic chains
on the Cu(001) surface based on the density functional theory with the
generalized gradient approximation. We find that V, Cr, and Mn linear chains on
the Cu(001) surface still have a stable or metastable ferromagnetic state.
However, the ferromagnetic state is unstable against formation of a
noncollinear spin-spiral structure in the Mn linear chains and also the V
linear chain on the atop sites on the Cu(001) surface, due to the frustrated
magnetic interactions in these systems. Nonetheless, the presence of the
Cu(001) substrate does destabilize the spin-spiral state already present in the
freestanding V linear chain and stabilizes the ferromagnetic state in the V
linear chain on the hollow sites on Cu(001). When spin-orbit coupling (SOC) is
included, the spin magnetic moments remain almost unchanged, due to the
weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments
and MAEs for the V, Cr and Mn are small, in comparison with both the
corresponding freestanding nanowires and also the Fe, Co and Ni linear chains
on the Cu (001) surface.Comment: Accepted for publication in J. Phys. D: Applied Physic
Uncertainties of predictions from parton distribution functions II: the Hessian method
We develop a general method to quantify the uncertainties of parton
distribution functions and their physical predictions, with emphasis on
incorporating all relevant experimental constraints. The method uses the
Hessian formalism to study an effective chi-squared function that quantifies
the fit between theory and experiment. Key ingredients are a recently developed
iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along
appropriately normalized eigenvectors. The result is a set of 2d Eigenvector
Basis parton distributions (where d=16 is the number of parton parameters) from
which the uncertainty on any physical quantity due to the uncertainty in parton
distributions can be calculated. We illustrate the method by applying it to
calculate uncertainties of gluon and quark distribution functions, W boson
rapidity distributions, and the correlation between W and Z production cross
sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix
changed to HEP standar
Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia
Myopia, or nearsightedness, is the most common eye disorder, resulting
primarily from excess elongation of the eye. The etiology of myopia, although
known to be complex, is poorly understood. Here we report the largest ever
genome-wide association study (43,360 participants) on myopia in Europeans. We
performed a survival analysis on age of myopia onset and identified 19
significant associations (p < 5e-8), two of which are replications of earlier
associations with refractive error. These 19 associations in total explain 2.7%
of the variance in myopia age of onset, and point towards a number of different
mechanisms behind the development of myopia. One association is in the gene
PRSS56, which has previously been linked to abnormally small eyes; one is in a
gene that forms part of the extracellular matrix (LAMA2); two are in or near
genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are
near genes known to be involved in the growth and guidance of retinal ganglion
cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal
signaling or development. These novel findings point towards multiple genetic
factors involved in the development of myopia and suggest that complex
interactions between extracellular matrix remodeling, neuronal development, and
visual signals from the retina may underlie the development of myopia in
humans
- …