441 research outputs found
Ultrasonic attenuation in magnetic fields for superconducting states with line nodes in Sr2RuO4
We calculate the ultrasonic attenuation in magnetic fields for
superconducting states with line nodes vertical or horizontal relative to the
RuO_2 planes. This theory, which is valid for fields near Hc2 and not too low
temperatures, takes into account the effects of supercurrent flow and Andreev
scattering by the Abrikosov vortex lattice. For rotating in-plane field
H(theta) the attenuation alpha(theta)exhibits variations of fourfold symmetry
in the rotation angle theta. In the case of vertical nodes, the transverse T100
sound mode yields the weakest(linear)H and T dependence of alpha, while the
longitudinal L100 mode yields a stronger (quadratic) H and T dependence. This
is in strong contrast to the case of horizontal line nodes where alpha is the
same for the T100 and L100 modes (apart from a shift of pi/4 in field
direction) and is roughly a quadratic function of H and T. Thus we conclude
that measurements of alpha in in-plane magnetic fields for different in-plane
sound modes may be an important tool for probing the nodal structure of the gap
in Sr_2RuO_4.Comment: 5 pages, 6 figures, replaced in non-preprint form, to appear in Phys.
Rev.
Anisotropy of in-plane magnetization due to nodal gap structure in the vortex state
We examine the interplay between anisotropy of the in-plane magnetization and
the nodal gap structure on the basis of the approximate analytic solution in
the quasiclassical formalism. We show that a four-fold oscillation appears in
the magnetization, and its amplitude changes sign at an intermediate field. The
high-field oscillation originates from the anisotropy of the upper critical
field, while the low-field behavior can be understood by the thermally
activated quasiparticles near nodes depending on the applied field angles. The
temperature dependence of the magnetization also shows a similar sign change.
The anisotropy of the magnetization offers a possible measurement to identify
the gap structure directly for a wide class of type II superconductors.Comment: 4 pages, 4 figure
Dynamics and Selection of Giant Spirals in Rayleigh-Benard Convection
For Rayleigh-Benard convection of a fluid with Prandtl number \sigma \approx
1, we report experimental and theoretical results on a pattern selection
mechanism for cell-filling, giant, rotating spirals. We show that the pattern
selection in a certain limit can be explained quantitatively by a
phase-diffusion mechanism. This mechanism for pattern selection is very
different from that for spirals in excitable media
Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection
We study hexagon patterns in non-Boussinesq convection of a thin rotating
layer of water. For realistic parameters and boundary conditions we identify
various linear instabilities of the pattern. We focus on the dynamics arising
from an oscillatory side-band instability that leads to a spatially disordered
chaotic state characterized by oscillating (whirling) hexagons. Using
triangulation we obtain the distribution functions for the number of pentagonal
and heptagonal convection cells. In contrast to the results found for defect
chaos in the complex Ginzburg-Landau equation and in inclined-layer convection,
the distribution functions can show deviations from a squared Poisson
distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at
http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J.
Physic
Influence of gap structures to specific heat in oriented magnetic fields: Application to the orbital dependent superconductor, SrRuO
We discuss influence of modulation of gap function and anisotropy of Fermi
velocity to field angle dependences of upper critical field, , and
specific heat, , on the basis of the approximate analytic solution in the
quasiclassical formalism. Using 4-fold modulation of the gap function and the
Fermi velocity in the single-band model, we demonstrate field and temperature
dependence of oscillatory amplitude of and . We apply the method to
the effective two-band model to discuss the gap structure of SrRuO,
focusing on recent field angle-resolved experiments. It is shown that the gap
structures with the intermediate magnitude of minima in direction for
band, and tiny minima of gaps in directions for and
bands give consistent behaviors with experiments. The interplay of the
above two gaps also explains the anomalous temperature dependence of in-plane
anisotropy, where the opposite contribution from the passive
band is pronounced near .Comment: 7 pages, 11 figures in JPSJ forma
Theory of vortex excitation imaging via an NMR relaxation measurement
The temperature dependence of the site-dependent nuclear spin relaxation time
T_1 around vortices is studied in s-wave and d-wave superconductors.Reflecting
low energy electronic excitations associated with the vortex core, temperature
dependences deviate from those of the zero-field case, and T_1 becomes faster
with approaching the vortex core. In the core region, T_1^{-1} has a new peak
below T_c. The NMR study by the resonance field dependence may be a new method
to prove the spatial resolved vortex core structure in various superconductors.Comment: 5 pages, 3 figure
Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection
Patterns forming spontaneously in extended, three-dimensional, dissipative
systems are likely to excite several homogeneous soft modes (
hydrodynamic modes) of the underlying physical system, much more than quasi
one- and two-dimensional patterns are. The reason is the lack of damping
boundaries. This paper compares two analytic techniques to derive the patten
dynamics from hydrodynamics, which are usually equivalent but lead to different
results when applied to multiple homogeneous soft modes. Dielectric
electroconvection in nematic liquid crystals is introduced as a model for
three-dimensional pattern formation. The 3D pattern dynamics including soft
modes are derived. For slabs of large but finite thickness the description is
reduced further to a two-dimensional one. It is argued that the range of
validity of 2D descriptions is limited to a very small region above threshold.
The transition from 2D to 3D pattern dynamics is discussed. Experimentally
testable predictions for the stable range of ideal patterns and the electric
Nusselt numbers are made. For most results analytic approximations in terms of
material parameters are given.Comment: 29 pages, 2 figure
Vortex structure in -wave superconductors
Vortex structure of pure -wave superconductors is
microscopically analyzed in the framework of the quasi-classical Eilenberger
equations. Selfconsistent solution for the -wave pair potential is obtained
for the first time in the case of an isolated vortex. The vortex core
structure, i.e., the pair potential, the supercurrent and the magnetic field,
is found to be fourfold symmetric even in the case that the mixing of -wave
component is absent. The detailed temperature dependences of these quantities
are calculated. The fourfold symmetry becomes clear when temperature is
decreased. The local density of states is calculated for the selfconsistently
obtained pair potential. From the results, we discuss the flow trajectory of
the quasiparticles around a vortex, which is characteristic in the
-wave superconductors. The experimental relevance of our results
to high temperature superconductors is also given.Comment: 22 pages, RevTex, 23 figures available upon reques
Quasiclassical Approach to Transport in the Vortex State and the Hall Effect
We derive generalized quasiclassical transport equations which include the
terms responsible for the Hall Effect in the vortex state of a clean type-II
superconductor, and calculate the conductivity tensor for an s-wave
superconductor in the high-field regime. We find that below the superconducting
transition the contribution to the transverse conductivity due to dynamical
fluctuations of the order parameter is compensated by the modification of the
quasiparticle contribution. In this regime the nonlinear behaviour of the Hall
angle is governed by the change in the effective quasiparticle scattering rate
due to the reduction in the density of states at the Fermi level. The
connection with experimental results is discussed.Comment: 32 pages, 3 postscript figure
Vortex structure in chiral p-wave superconductors
We investigate the vortex structure in chiral p-wave superconductors by the
Bogoliubov-de Gennes theory on a tight-binding model. We calculate the spatial
structure of the pair potential and electronic state around a vortex, including
the anisotropy of the Fermi surface and superconducting gap structure. The
differences of the vortex structure between -wave
and -wave superconductors are clarified in the
vortex lattice state. We also discuss the winding case of the
-wave superconductivity.Comment: 10 pages, 8 figure
- …