3,229 research outputs found

    Dynamical Structure Factor in Cu Benzoate and other spin-1/2 antiferromagnetic chains

    Full text link
    Recent experiments of the quasi-one-dimensional spin-1/2 antiferromagnet Copper Benzoate established the existence of a magnetic field induced gap. The observed neutron scattering intensity exhibits resolution limited peaks at both the antiferromagnetic wave number and at incommensurate wave numbers related to the applied magnetic field. We determine the ratio of spectral weights of these peaks within the framework of a low-energy effective field theory description of the problem.Comment: 5 pages, 3figure

    A two dimensional model for ferromagnetic martensites

    Full text link
    We consider a recently introduced 2-D square-to-rectangle martensite model that explains several unusual features of martensites to study ferromagnetic martensites. The strain order parameter is coupled to the magnetic order parameter through a 4-state clock model. Studies are carried out for several combinations of the ordering of the Curie temperatures of the austenite and martensite phases and, the martensite transformation temperature. We find that the orientation of the magnetic order which generally points along the short axis of the rectangular variant, changes as one crosses the twin or the martensite-austenite interface. The model shows the possibility of a subtle interplay between the growth of strain and magnetic order parameters as the temperature is decreased. In some cases, this leads to qualitatively different magnetization curves from those predicted by earlier mean field models. Further, we find that strain morphology can be substantially altered by the magnetic order. We have also studied the dynamic hysteresis behavior. The corresponding dissipation during the forward and reverse cycles has features similar to the Barkhausen's noise.Comment: 9 pages, 11 figure

    Nonmagnetic Insulating States near the Mott Transitions on Lattices with Geometrical Frustration and Implications for κ\kappa-(ET)2_2Cu2(CN)3_2(CN)_3

    Full text link
    We study phase diagrams of the Hubbard model on anisotropic triangular lattices, which also represents a model for κ\kappa-type BEDT-TTF compounds. In contrast with mean-field predictions, path-integral renormalization group calculations show a universal presence of nonmagnetic insulator sandwitched by antiferromagnetic insulator and paramagnetic metals. The nonmagnetic phase does not show a simple translational symmetry breakings such as flux phases, implying a genuine Mott insulator. We discuss possible relevance on the nonmagnetic insulating phase found in κ\kappa-(ET)2_2Cu2(CN)3_2(CN)_3.Comment: 4pages including 7 figure

    Sex of muscle stem cells does not influence potency for cardiac cell therapy

    Get PDF
    We have previously shown that populations of skeletal muscle-derived stem cells (MDSCs) exhibit sexbased differences for skeletal muscle and bone repair, with female cells demonstrating superior engrafting abilities to males in skeletal muscle while male cells differentiating more robustly toward the osteogenic and chondrogenic lineages. In this study, we tested the hypothesis that the therapeutic capacity of MDSCs transplanted into myocardium is influenced by sex of donor MDSCs or recipient. Male and female MDSCs isolated from the skeletal muscle of 3-week-old mice were transplanted into recipient male or female dystrophin-deficient (mdx) hearts or into the hearts of male SCID mice following acute myocardial infarction. In the mdx model, no difference was seen in engraftment or blood vessel formation based on donor cell or recipient sex. In the infarction model, MDSC-transplanted hearts showed higher postinfarction angiogenesis, less myocardial scar formation, and improved cardiac function compared to vehicle controls. However, sex of donor MDSCs had no significant effects on engraftment, angiogenesis, and cardiac function. VEGF expression, a potent angiogenic factor, was similar between male and female MDSCs. Our results suggest that donor MDSC or recipient sex has no significant effect on the efficiency of MDSC-triggered myocardial engraftment or regeneration following cardiac injury. The ability of the MDSCs to improve cardiac regeneration and repair through promotion of angiogenesis without differentiation into the cardiac lineage may have contributed to the lack of sex difference observed in these models. Copyright © 2009 Cognizant Comm. Corp

    ESR investigation on the Breather mode and the Spinon-Breather dynamical crossover in Cu Benzoate

    Full text link
    A new elementary-excitation, the so called "breather excitation", is observed directly by millimeter-submillimeter wave electron spin resonance (ESR) in the Heisenberg quantum spin-chain Cu benzoate, in which a field-induced gap is found recently by specific heat and neutron scattering measurements. Distinct anomalies were found in line width and in resonance field around the "dynamical crossover" regime between the gap-less spinon-regime and the gapped breather-regime. When the temperature becomes sufficiently lower than the energy gap, a new ESR-line with very narrow line-width is found, which is the manifestation of the breather excitation. The non-linear field dependence of the resonance field agrees well with the theoretical formula of the first breather-excitation proposed by Oshikawa and Affleck. The present work establishes experimentally for the first time that a sine-Gordon model is applicable to explain spin dynamics in a S=1/2 Heisenberg spin chain subjected to staggered field even in high fields.Comment: Revtex, 4 pages, 4 figures, submitted to Phys. Rev. Let

    Experimental observation of Frohlich superconductivity in high magnetic fields

    Full text link
    Resistivity and irreversible magnetisation data taken within the high-magnetic-field CDWx phase of the quasi-two-dimensional organic metal alpha-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin-depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.Comment: ten pages, four figure

    Superlattices Consisting of "Lines" of Adsorbed Hydrogen Atom Pairs on Graphene

    Full text link
    The structures and electron properties of new superlattices formed on graphene by adsorbed hydrogen molecules are theoretically described. It has been shown that superlattices of the (n, 0) zigzag type with linearly arranged pairs of H atoms have band structures similar to the spectra of (n, 0) carbon nanotubes. At the same time, superlattices of the (n, n) type with a "staircase" of adsorbed pairs of H atoms are substantially metallic with a high density of electronic states at the Fermi level and this property distinguishes their spectra from the spectra of the corresponding (n, n) nanotubes. The features of the spectra have the Van Hove form, which is characteristic of each individual superlattice. The possibility of using such planar structures with nanometer thickness is discussed.Comment: 5 pages, 4 figure

    The polymer phase of the TDAE-C60_{60} organic ferromagnet

    Get PDF
    The high-pressure Electron Spin Resonance (ESR) measurements were preformed on TDAE-C60_{60} single crystals and stability of the polymeric phase was established in the PTP - T parameter space. At 7 kbar the system undergoes a ferromagnetic to paramagnetic phase transition due to the pressure-induced polymerization. The polymeric phase remains stable after the pressure release. The depolymerization of the pressure-induced phase was observed at the temperature of 520 K. Below room temperature, the polymeric phase behaves as a simple Curie-type insulator with one unpaired electron spin per chemical formula. The TDAE+^+ donor-related unpaired electron spins, formerly ESR-silent, become active above the temperature of 320 K and the Curie-Weiss behavior is re-established.Comment: Submitted to Phys. Rev.

    Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells

    Get PDF
    The activation of Wnt/β-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/β-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/β-catenin activity in gastric tumorigenesis. We found β-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in ApcΔ716 mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/β-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/β-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-α. Furthermore, treatment with TNF-α induced glycogen synthase kinase 3β (GSK3β) phosphorylation, which resulted in the stabilization of β-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β-catenin accumulation. These results suggest that macrophage-derived TNF-α promotes Wnt/β-catenin signalling through inhibition of GSK3β, which may contribute to tumour development in the gastric mucosa
    corecore