2,320 research outputs found

    Color bimodality: Implications for galaxy evolution

    Get PDF
    We use a sample of 69726 galaxies from the SDSS to study the variation of the bimodal color-magnitude (CM) distribution with environment. Dividing the galaxy population by environment (Sigma_5) and luminosity (-23<M_r<-17), the u-r color functions are modeled using double-Gaussian functions. This enables a deconvolution of the CM distributions into two populations: red and blue sequences. The changes with increasing environmental density can be separated into two effects: a large increase in the fraction of galaxies in the red distribution, and a small color shift in the CM relations of each distribution. The average color shifts are 0.05+-0.01 and 0.11+-0.02 for the red and blue distributions, respectively, over a factor of 100 in projected neighbor density. The red fraction varies between about 0% and 70% for low-luminosity galaxies and between about 50% and 90% for high-luminosity galaxies. This difference is also shown by the variation of the luminosity functions with environment. We demonstrate that the effects of environment and luminosity can be unified. A combined quantity, Sigma_mod = Sigma_5/Mpc^{-2} + L_r/L_{-20.2}, predicts the fraction of red galaxies, which may be related to the probability of transformation events. Our results are consistent with major interactions (mergers and/or harassment) causing galaxies to transform from the blue to the red distribution. We discuss this and other implications for galaxy evolution from earlier results and model the effect of slow transformations on the color functions.Comment: 14 pages, 8 figures, in AIP Conf. Proc., The New Cosmology, eds. R. E. Allen et al. (aka. The Mitchell Symposium), see http://proceedings.aip.org/proceedings/confproceed/743.jsp ; v2: replaced Figure 5 which was incomplete in original submissio

    Galaxy bimodality versus stellar mass and environment

    Get PDF
    We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body simulation: the Bower et al. (2006) and Croton et al. (2006) models that incorporate AGN feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.Comment: 19 pages, 17 figures; accepted by MNRAS, minor change

    High-rate, high-fidelity entanglement of qubits across an elementary quantum network

    Full text link
    We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88{}^{88}Sr+{}^{+} qubits are entangled via the polarization degree of freedom of two photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beamsplitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate remote Bell pairs with fidelity F=0.940(5)F=0.940(5) at an average rate 182s1182\,\mathrm{s}^{-1} (success probability 2.18×1042.18\times10^{-4}).Comment: v2 updated to include responses to reviewers, as published in PR

    Spectroscopic Observations of Optically Selected Clusters of Galaxies from the Palomar Distant Cluster Survey

    Get PDF
    We have conducted a redshift survey of sixteen cluster candidates from the Palomar Distant Cluster Survey (PDCS) to determine both the density of PDCS clusters and the accuracy of the estimated redshifts presented in the PDCS catalog (Postman et. al. 1996). We find that the matched-filter redshift estimate presented in the PDCS has an error sigma_z = 0.06 in the redshift range 0.1 < z < 0.35 based on eight cluster candidates with three or more concordant galaxy redshifts. We measure the low redshift (0.1 < z < 0.35) space density of PDCS clusters to be 31.3^{+30.5}_{-17.1} * E-06 h^3 Mpc^-3 (68% confidence limits for a Poisson distribution) for Richness Class 1 systems. We find a tentative space density of 10.4^{+23.4}_{-8.4}* E-06 h^3 Mpc^-3 for Richness Class 2 clusters. These densities compare favorably with those found for the whole of the PDCS and support the finding that the space density of clusters in the PDCS is a factor of ~5 above that of clusters in the Abell catalog (Abell 1958; Abell, Corwin, and Olowin 1989). These new space density measurements were derived as independently as possible from the original PDCS analysis and therefore, demonstrate the robustness of the original work. Based on our survey, we conclude that the PDCS matched-filter algorithm is successful in detecting real clusters and in estimating their true redshifts in the redshift range we surveyed.Comment: 23 pages with 4 figures and 3 seperate tables. To be published in the November Issue of the Astronomical Journa

    Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches

    Get PDF
    We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at the Neutrino 2012 Conference are also included. We focus on the correlations between theta_13 and the mixing angle theta_23, as well as between theta_13 and the neutrino CP-violation phase delta. We find interesting indications for theta_23< pi/4 and possible hints for delta ~ pi, with no significant difference between normal and inverted mass hierarchy.Comment: Updated version, including recent data released at the Neutrino 2012 Conference. Some references adde

    GMOS Integral Field Spectroscopy of a Merging System with Enhanced Balmer Absorption

    Full text link
    In this paper we present the three dimensional dynamics of the galaxy SDSS J101345.39+011613.66, selected for its unusually strong Balmer absorption lines (Wo(H-delta)=7.5A). Using the GMOS-South IFU in Nod & Shuffle mode we have mapped the continuum and optical absorption lines of this z=0.1055 field galaxy. This galaxy has a disturbed morphology, with a halo of diffuse material distributed asymmetrically toward the north. Using the [OII] emission line (Wo([OII])=4.1A) we find that the gas and hot OB stars are offset from the older stars in the system. The gas also has a spatially extended and elongated morphology with a velocity gradient of 100+/-20km/s across 6kpc in projection. Using the strong H-gamma and H-delta absorption lines we find that the A- stars are widely distributed across the system and are not centrally concentrated arguing that the A-star population has formed in molecular clouds outside the nucleus. By cross correlating the spectra from the datacube with an A-star template we find evidence that the A-star population has a 40km/s shear in the same direction as the gas. The disturbed morphology, strong colour gradients and strong H-delta and H-gamma absorption lines in SDSS J101345.39 argue that this is a recent tidal interaction/merger between a passive elliptical and star-forming galaxy. Although based on a single object, these results show that we can spatially resolve and constrain the dynamics of this short lived (yet important) phase of galaxy formation in which the evolutionary process take galaxies from star-forming to their quiescent end products.Comment: 7 pages, 7 figures. Accepted for publication in Ap
    corecore