49,301 research outputs found
Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels
Recent magnetotransport experiments on high mobility two-dimensional electron
systems have revealed many-body electron states unique to high Landau levels.
Among these are re-entrant integer quantum Hall states which undergo sharp
transitions to conduction above some threshold field. Here we report that these
transitions are often accompanied by narrow- and broad-band noise with
frequencies which are strongly dependent on the magnitude of the applied dc
current.Comment: 4 pages, 3 figure
Metastable Resistance Anisotropy Orientation of Two-Dimensional Electrons in High Landau Levels
In half-filled high Landau levels, two-dimensional electron systems possess
collective phases which exhibit a strongly anisotropic resistivity tensor. A
weak, but as yet unknown, rotational symmetry-breaking potential native to the
host semiconductor structure is necessary to orient these phases in macroscopic
samples. Making use of the known external symmetry-breaking effect of an
in-plane magnetic field, we find that the native potential can have two
orthogonal local minima. It is possible to initialize the system in the higher
minimum and then observe its relaxation toward equilibrium.Comment: 5 pages, 3 figures. Figure references corrected. Version accepted for
publication in Physical Review Letter
Effect of Edwardsiella ictaluri Infection on Plasma Corticosterone Levels in Channel Catfish (Ictalurus punctatus)
Channel catfish (Ictalurus punctatus) were innoculated with a new host specific bacterium, Edwardsiella ictaluri, to observe the influence of bacterial infection on plasma corticosterone levels at various temperatures. The fish were innoculated intraperitoneally. The infected fish were separated from the controls. Plasma corticosterone concentrations were determined by radioimmunoassay. The plasma corticosterone concentrations in non-innoculated catfish were about 6.15 ng/ml and nearly 5.63 ng/ml in the infected fish. The lower level of the hormone in the infected catfish was not significantly different from the control level. High temperature was a stress factor which increased plasma corticosterone levels whereas E. ictaluri retarded the response of corticosterone secreting cells of the fish kidneys
Dissipation and Tunnelling in Quantum Hall Bilayers
We discuss the interplay between transport and intrinsic dissipation in
quantum Hall bilayers, within the framework of a simple thought experiment. We
compute, for the first time, quantum corrections to the semiclassical dynamics
of this system. This allows us to re-interpret tunnelling measurements on these
systems. We find a strong peak in the zero-temperature tunnelling current that
arises from the decay of Josephson-like oscillations into incoherent charge
fluctuations. In the presence of an in-plane field, resonances in the
tunnelling current develop an asymmetric lineshape.Comment: 4 pages, 3 figure
Optical sum rules that relate to the potential energy of strongly correlated systems
A class of sum rules for inelastic light scattering is developed. We show
that the first moment of the non-resonant response provides information about
the potential energy in strongly correlated systems. The polarization
dependence of the sum rules provide information about the electronic
excitations in different regions of the Brillouin zone. We determine the sum
rule for the Falicov-Kimball model, which possesses a metal-insulator
transition, and compare our results to the light scattering experiments in
SmB_6.Comment: (5 pages, 3 figures, typeset in ReVTeX
New Physics in High Landau Levels
Recent magneto-transport experiments on ultra-high mobility 2D electron
systems in GaAs/AlGaAs heterostructures have revealed the existence of whole
new classes of correlated many-electron states in highly excited Landau levels.
These new states, which appear only at extremely low temperatures, are
distinctly different from the familiar fractional quantum Hall liquids of the
lowest Landau level. Prominent among the recent findings are the discoveries of
giant anisotropies in the resistivity near half filling of the third and higher
Landau levels and the observation of re- entrant integer quantum Hall states in
the flanks of these same levels. This contribution will survey the present
status of this emerging field.Comment: 8 pages, 9 figures. To be published in the Proceedings of the 13th
International Conference on the Electronic Properties of Two-Dimensional
System
Reply to Simon's Comment on "Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels"
We recently reported [PRL 82, 394 (1999)] large transport anisotropies in a
two-dimensional electron gas in high Landau levels. These observations were
made utilizing both square and Hall bar sample geometries. Simon recently
commented [cond-mat/9903086] that a classical calculation of the current flow
in the sample shows a magnification of an underlying anisotropy when using a
square sample. In this reply we present more recent data obtained with a very
high mobility sample, and reiterate that, with or without magnification, an
anisotropic state develops in high Landau levels at very low temperatures.Comment: 1 page, 1 figur
Chaos in Time Dependent Variational Approximations to Quantum Dynamics
Dynamical chaos has recently been shown to exist in the Gaussian
approximation in quantum mechanics and in the self-consistent mean field
approach to studying the dynamics of quantum fields. In this study, we first
show that any variational approximation to the dynamics of a quantum system
based on the Dirac action principle leads to a classical Hamiltonian dynamics
for the variational parameters. Since this Hamiltonian is generically nonlinear
and nonintegrable, the dynamics thus generated can be chaotic, in distinction
to the exact quantum evolution. We then restrict attention to a system of two
biquadratically coupled quantum oscillators and study two variational schemes,
the leading order large N (four canonical variables) and Hartree (six canonical
variables) approximations. The chaos seen in the approximate dynamics is an
artifact of the approximations: this is demonstrated by the fact that its onset
occurs on the same characteristic time scale as the breakdown of the
approximations when compared to numerical solutions of the time-dependent
Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos
correcte
Collective Oscillations of Vortex Lattices in Rotating Bose-Einstein Condensates
The complete low-energy collective-excitation spectrum of vortex lattices is
discussed for rotating Bose-Einstein condensates (BEC) by solving the
Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode
recently observed at JILA. The totally symmetric subset of these modes includes
the transverse shear, common longitudinal, and differential longitudinal modes.
We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate
the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair
of breathing modes. Combining both the BdG and TDGP approaches allows one to
unambiguously identify every observed mode.Comment: 5 pages, 4 figure
- …