118 research outputs found
Model-independent effects of Delta excitation in nucleon polarizabilities
Model-independent effects of (1232) excitation on nucleon
polarizabilities are computed in a Lorentz-invariant fashion. We find a large
effect of relative order in some of the spin
polarizabilities, with the backward spin polarizability receiving the largest
contribution. Similar subleading effects are found to be important in the
fourth-order spin-independent polarizabilities , \al_{E2},
\be_{M\nu}, and \be_{M 2}. Combining our results with those for the
model-independent effects of pion loops we obtain predictions for spin and
fourth-order polarizabilities which compare favorably with the results of a
recent dispersion-relation analysis of data.Comment: 14 pages, 3 figs, 4 tables; substantial revision, calculation of
higher order polarizabilities include
Quasi-free Photoproduction from the Bound Nucleon
Differential cross-sections for quasi-free photoproduction from the
proton and neutron bound in the deuteron have been measured for MeV at usind the Glasgow photon
tagger at MAMI, the Mainz 48 cm 64 cm NaI(Tl) photon
detector and the G\"ottingen SENECA recoil detector. For the proton
measurements made with both liquid deuterium and liquid hydrogen targets allow
direct comparison of "free" photoproduction cross-sections as extracted
from the bound proton data with experimental free cross sections which are
found to be in reasonable agreement below 320 MeV. At higher energies the
"free" cross sections extracted from quasifree data are significantly smaller
than the experimental free cross sections and theoretical predictions based on
multipole analysis. For the first time, "free" neutron cross sections have been
extracted in the -region. They are also in agreement with the
predictions from multipole analysis up to 320 MeV and significantly smaller at
higher photon energies
Improved Source/Absorber Preparation for Radionuclide Spectrometry Based on Low-Temperature Calorimetric Detectors
High-resolution beta spectrometry based on low-temperature calorimetric detectors requires high-quality source/absorber combinations in order to avoid spectrum artifacts and to achieve optimal detection efficiency. In this work, preparation techniques and quality control methods to fabricate reliable source/absorber assemblies with the radionuclide under investigation embedded into them are discussed. © 2019, The Author(s)
Activity standardisation of <sup>32</sup>Si at IRA-METAS.
This work explores the primary activity standardisation of <sup>32</sup> Si as part of the SINCHRON project that aims at filling the geochronological dating gap by making a new precise measurement of the half-life of this nuclide. The stability of some of the radioactive test solutions, providing <sup>32</sup> Si as hexafluorosilicic acid (H <sub>2</sub> <sup>32</sup> SiF <sub>6</sub> ), was monitored over long periods, pointing to the adequate sample composition and vial type to ensure stability. These solutions were standardised using liquid scintillation counting with the triple to double coincidence ratio (TDCR) technique and the CIEMAT-NIST efficiency tracing (CNET) method. Complementary backup measurements, using 4πβ-γ coincidence counting with <sup>60</sup> Co as a tracer, were performed with both liquid and plastic scintillation for beta detection. While <sup>60</sup> Co coincidence tracing with a liquid scintillator predicted activities in agreement with the TDCR and CNET determinations, using plastic scintillation turned out to be unfeasible as the addition of lanthanum nitrate and ammonia to fix the silicon during the drying process generated large crystals that compromised the linearity of the efficiency function
Quasi-free Compton Scattering and the Polarizabilities of the Neutron
Differential cross sections for quasi-free Compton scattering from the proton
and neutron bound in the deuteron have been measured using the Glasgow/Mainz
tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48
cm 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA
recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV
at . Liquid deuterium and hydrogen targets
allowed direct comparison of free and quasi-free scattering from the proton.
The neutron detection efficiency of the SENECA detector was measured via the
reaction . The "free" proton Compton scattering cross
sections extracted from the bound proton data are in reasonable agreement with
those for the free proton which gives confidence in the method to extract the
differential cross section for free scattering from quasi-free data.
Differential cross sections on the free neutron have been extracted and the
difference of the electromagnetic polarizabilities of the neutron have been
obtained to be
in units . In combination with the polarizability sum deduced from photoabsorption data, the neutron electric and
magnetic polarizabilities, and
are obtained. The backward spin polarizability of the neutron was determined to
be
Compton Scattering by the Proton using a Large-Acceptance Arrangement
Compton scattering by the proton has been measured using the tagged-photon
facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The new
data are interpreted in terms of dispersion theory based on the SAID-SM99K
parameterization of photo-meson amplitudes. It is found that two-pion exchange
in the t-channel is needed for a description of the data in the second
resonance region. The data are well represented if this channel is modeled by a
single pole with mass parameter m(sigma)=600 MeV. The asymptotic part of the
spin dependent amplitude is found to be well represented by pi-0-exchange in
the t-channel. A backward spin-polarizability of
gamma(pi)=(-37.1+-0.6(stat+syst)+-3.0(model))x10^{-4}fm^4 has been determined
from data of the first resonance region below 455 MeV. This value is in a good
agreement with predictions of dispersion relations and chiral pertubation
theory. From a subset of data between 280 and 360 MeV the resonance
pion-photoproduction amplitudes were evaluated leading to a E2/M1 multipole
ratio of the p-to-Delta radiative transition of EMR(340
MeV)=(-1.7+-0.4(stat+syst)+-0.2(model))%. It was found that this number is
dependent on the parameterization of photo-meson amplitudes. With the MAID2K
parameterization an E2/M1 multipole ratio of EMR(340
MeV)=(-2.0+-0.4(stat+syst)+-0.2(model))% is obtained
Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities
Differential cross sections for Compton scattering from the deuteron were
measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at
nominal laboratory angles of , , and . Tagged
photons were scattered from liquid deuterium and detected in three NaI
spectrometers. By comparing the data with theoretical calculations in the
framework of a one-boson-exchange potential model, the sum and difference of
the isospin-averaged nucleon polarizabilities, and (in units of fm),
have been determined. By combining the latter with the global-averaged value
for and using the predictions of the Baldin sum rule for
the sum of the nucleon polarizabilities, we have obtained values for the
neutron electric and magnetic polarizabilities of (total) (model) and (total) (model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The
cross sections are slightly different due to improvements in the analysi
MetroMMC: Electron-Capture Spectrometry with Cryogenic Calorimeters for Science and Technology
Accurate decay data of radionuclides are necessary for many fields of science and technology, ranging from medicine and particle physics to metrology. However, data that are in use today are mostly based on measurements or theoretical calculation methods that are rather old. Recent measurements with cryogenic detectors and other methods show significant discrepancies to both older experimental data and theory in some cases. Moreover, the old results often suffer from large or underestimated uncertainties. This is in particular the case for electron-capture (EC) decays, where only a few selected radionuclides have ever been measured. To systematically address these shortcomings, the European metrology project MetroMMC aims at investigating six radionuclides decaying by EC. The nuclides are chosen to cover a wide range of atomic numbers Z, which results in a wide range of decay energies and includes different decay modes, such as pure EC or EC accompanied by γ- and/or β+-transitions. These will be measured using metallic magnetic calorimeters (MMCs), cryogenic energy-dispersive detectors with high-energy resolution, low-energy threshold and high, adjustable stopping power that are well suited for measurements of the total decay energy and X-ray spectrometry. Within the MetroMMC project, these detectors are used to obtain X-ray emission intensities of external sources as well as fractional EC probabilities of sources embedded in a 4 π absorber. Experimentally determined nuclear and atomic data will be compared to state-of-the-art theoretical calculations which will be further developed within the project. This contribution introduces the MetroMMC project and in particular its experimental approach. The challenges in EC spectrometry are to adapt the detectors and the source preparation to the different decay channels and the wide energy range involved, while keeping the good resolution and especially the low-energy threshold to measure the EC from outer shells. © 2019, The Author(s)
Neutron polarizabilities investigated by quasi-free Compton scattering from the deuteron
Measuring Compton scattered photons and recoil neutrons in coincidence,
quasi-free Compton scattering by the neutron has been investigated at MAMI
(Mainz) at in an energy range from 200 to 400 MeV.
From the data a polarizability difference of in units of has been
determined. In combination with the polarizability sum deduced from photo absorption data, the neutron electric and
magnetic polarizabilities, and ,
are obtained
- …