373 research outputs found

    Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers

    Get PDF
    Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a novel type of vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a twodimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chordbased blockage-corrected Reynolds number (Recorr) of ~2.70 x 105 . The baseline model has been found to suffer from a long laminar separation bubble (LSB) at low AoA. The application of the indentations at low AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, respectively, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.3% and ~0.3%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the LSB, but conversely, they are not highly effective in enhancing cl,p and cd,p at the tested Re

    Pseudo-shock waves and their interactions in high-speed intakes

    Get PDF
    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review

    Compressible vortex loops: effect of nozzle geometry

    Get PDF
    Vortex loops are fundamental building blocks of supersonic free jets. Isolating them allows for an easier study and better understanding of such flows. The present study looks at the behaviour of compressible vortex loops of different shapes, generated due to the diffraction of a shock wave from a shock tube with different exit nozzle geometries. These include a 15 mm diameter circular nozzle, two elliptical nozzles with minor to major axis ratios of 0.4 and 0.6, a 30 × 30 mm square nozzle, and finally two exotic nozzles resembling a pair of lips with minor to major axis ratios of 0.2 and 0.5. The experiments were performed for diaphragm pressure ratios of P4/P1=4, 8, and 12, with P4 and P1 being the pressures within the high pressure and low pressure compartments of the shock tube, respectively. High-speed schlieren photography as well as PIV measurements of both stream-wise and head-on flows have been conducted

    Experimental Study of Low-Speed Cavity Flow Using Steady Jets

    Get PDF
    Open cavity ሺܮ/ܦ = 4ሻ was examined at low speed ሺܷஶ = 26 ݉/ݏሻ. The baseline flow showed a typical open cavity flow. It was also found that a region of relatively high velocity fluctuations (indicated by RMS values) extends along the cavity separated shear layer from the mid of the cavity to the cavity’s trailing edge. Steady jets at an outlet velocity of 1.8 m/s was forced through a narrow slot at the leading edge. The jets modified the profile shape of the averaged ܷ velocity for the shear layer at the close proximity of the leading edge. However, the jet increased the fluctuation in the separated shear layer

    Detonation driven shock wave interactions with perforated plates

    Get PDF
    The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7–9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0–30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface

    Application of pressure-sensitive paints to unsteady and high-speed flows

    Get PDF
    The Pressure-Sensitive Paint (PSP) technique allows the global pressure mapping of surfaces under aerodynamic conditions. The present study involves the application of Tris- Bathophenanthroline Ruthenium Perchlorate based PSP, developed in-house, to two different cases; a) the flow through a sonic nozzle, and b) the examination of the effect of dimples on glancing shock wave turbulent boundary layer interactions at transonic speeds

    Control of Cavity-Induced Drag Using Steady Jets

    Get PDF
    Separated shear layer oscillations in open cavities can induce drag, noise and vibration. This issue has many aerospace applications such as Landing gears and control surfaces [1]. Recently, phase-cancellation [1] and offinstability frequency excitation [2] & [3] approaches have been incorporated in different open-loop and feedback control systems. Despite the high control performance of these systems, further enhancement is still possible. In this study, steady jets, as shown in fig. 1, are forced through 2mm, two-dimensional slots at the leading and trailing edges of the cavity. In order to study the performance of this novel approach, different cases will be examined, including: jet combination (blowing from cavity leading edge, suction from cavity leading edge and blowing-suction), jet angle (parallel or deflected jet) and jet-to-free stream velocity factor /.

    Experimental investigations on the sharp leading-edge separation over a flat plate at zero incidence using particle image velocimetry

    Get PDF
    Leading-edge separated flow field over a sharp flat plate is experimentally investigated in Reynolds numbers ranging from 6.2 × 103 to 4.1 × 104, using particle image velocimetry (PIV) and its statistics. It was observed that the average reattachment length is nearly independent of Reynolds number and the small secondary bubble observed near the leading edge was found to shrink with increasing Reynolds number. The wall-normal profiles of the statistical values of kinematic quantities such as the velocity components and their fluctuations scaled well with average reattachment length lR and freestream velocity U∞. Their magnitudes compare well with previous investigations even though the current triangular shaped sharp leading edge is different from previous flat-faced or semi-circular ones. The shear layer was observed to exhibit 2 different linear growth rates over 2 distinct regions. Instantaneous PIV realizations demonstrate unsteady nature of the separation bubble, whose origins in the upstream portion of the bubble are analysed. Bimodal nature of the probability density function (PDF) of fluctuating streamwise velocity at around x/lR = 0.08–0.15 indicates successive generation and passage of vortices in the region, which subsequently interact and evolve into multiscale turbulent field exhibiting nearly Gaussian PDF. Shedding of vortices with wide range of scales are apparent in most of the instantaneous realizations. Proper Orthogonal Decomposition (POD) of the velocity fluctuation magnitude field revealed that the flow structures of the dominant modes and their relative energies are independent of Reynolds number. In each of the dominant modes (first 3 modes), the length scales corresponding to the large scale structures and their spacing are the same for all Reynolds numbers, suggesting that their Strouhal number (observed to be ~ 0.09–0.2 at Reynolds number of 6.2 × 103) of unsteadiness should also be independent of Reynolds number. A single large structure- comparable in size to lR—was apparent well before reattachment in a few instantaneous realizations, as compared to multiple small-scale structures visible in most realizations; at Reynolds number of 6.2 × 103, realizations with such large-scale structures occurred approximately after every 20–30 realizations, corresponding to non-dimensional frequency of 0.4–0.6, which is identified to be the “regular shedding”. It was possible to reconstruct the large-scale structure during the instances from just the first 3 POD modes, indicating that the Strouhal number of regular shedding too is independent of Reynolds number

    Transverse jet-cavity interactions with the influence of an impinging shock

    Get PDF
    For high-speed air breathing engines, fuel injection and subsequent mixing with air is paramount for combustion. The high freestream velocity poses a great challenge to efficient mixing both in macroscale and microscale. Utilising cavities downstream of fuel injection locations, as a means to hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods: schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study
    corecore