17 research outputs found
Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors
We report a buried heterostructure vertical-cavity surface-emitting laser
fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The
regrowth technique enables microscale lateral confinement that preserves a high
cavity quality factor (loaded 4000) and eliminates parasitic
charging effects found in existing approaches. Under optimal spectral overlap
between gain medium and cavity mode (achieved here at = 40 K) lasing was
obtained with an incident optical power as low as = 10 mW
( = 808 nm). The laser linewidth was found to be 3
GHz at 5
Coherent versus Incoherent Light Scattering from a Quantum Dot
We analyze the light scattered by a single InAs quantum dot interacting with
a resonant continuous-wave laser. High resolution spectra reveal clear
distinctions between coherent and incoherent scattering, with the laser
intensity spanning over four orders of magnitude. We find that the fraction of
coherently scattered photons can approach unity under sufficiently weak or
detuned excitation, ruling out pure dephasing as a relevant decoherence
mechanism. We show how spectral diffusion shapes spectra, correlation
functions, and phase-coherence, concealing the ideal radiatively-broadened
two-level system described by Mollow.Comment: to appear in PRB 85, 23531
Full counting statistics of quantum dot resonance fluorescence
The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding
Two-color photon correlations of the light scattered by a quantum dot
Two-color second-order correlations of the light scattered near-resonantly by
a quantum dot were measured by means of spectrally-filtered coincidence
detection. The effects of filter frequency and bandwidth were studied under
monochromatic laser excitation, and a complete two-photon spectrum was
reconstructed. In contrast to the ordinary one-photon spectrum, the two-photon
spectrum is asymmetric with laser detuning and exhibits a rich structure
associated with both real and virtual two-photon transitions down the "dressed
states" ladder. Photon pairs generated via virtual transitions are found to
violate the Cauchy-Schwartz inequality by a factor of 60. Our experiments are
well described by the theoretical expressions obtained by del Valle et al. via
time-and normally-ordered correlation functions.Comment: 5 pages, 3 figure