214 research outputs found
Human vault-associated non-coding RNAs bind to mitoxantrone, a chemotherapeutic compound
Human vaults are the largest cytoplasmic ribonucleoprotein and are overexpressed in cancer cells. Vaults reportedly function in the extrusion of xenobiotics from the nuclei of resistant cells, but the interactions of xenobiotics with the vault-associated proteins or non-coding RNAs have never been directly observed. In the present study, we show that vault RNAs (vRNAs), specifically the hvg-1 and hvg-2 RNAs, bind to a chemotherapeutic compound, mitoxantrone. Using an in-line probing assay (spontaneous transesterification of RNA linkages), we have identified the mitoxantrone binding region within the vRNAs. In addition, we analyzed the interactions between vRNAs and mitoxantrone in the cellular milieu, using an in vitro translation inhibition assay. Taken together, our results clearly suggest that vRNAs have the ability to bind certain chemotherapeutic compounds and these interactions may play an important role in vault function, by participating in the export of toxic compounds
Inhibition of interferon response by cystatin B: implication in HIV replication of macrophage reservoirs
Cystatin B and signal transducer and activator of transcription-1 (STAT-1) phosphorylation have recently been shown to increase human immunodeficiency virus-1 (HIV-1) replication in monocyte-derived macrophages (MDM), but the molecular pathways by which they do are unknown. We hypothesized that cystatin B inhibits the interferon (IFN) response and regulates STAT-1 phosphorylation by interacting with additional proteins. To test if cystatin B inhibits the IFN-Ξ² response, we performed luciferase reporter gene assays in Vero cells, which are IFN deficient. Interferon-stimulated response element (ISRE)-driven expression of firefly luciferase was significantly inhibited in Vero cells transfected with a cystatin B expression vector compared to cells transfected with an empty vector. To determine whether cystatin B interacts with other key players regulating STAT-1 phosphorylation and HIV-1 replication, cystatin B was immunoprecipitated from HIV-1-infected MDM. The protein complex was analyzed by liquid chromatography tandem mass spectrometry. Protein interactions with cystatin B were verified by Western blots and immunofluorescence with confocal imaging. Our findings confirmed that cystatin B interacts with pyruvate kinase M2 isoform, a protein previously associated cocaine enhancement of HIV-1 replication, and major vault protein (MVP), an IFN-responsive protein that interferes with JAK/STAT signals. Western blot studies confirmed the interaction with pyruvate kinase M2 isoform and MVP. Immunofluorescence studies of HIV-1-infected MDM showed that upregulated MVP colocalized with STAT-1. To our knowledge, the current study is the first to demonstrate the coexpression of cystatin B, STAT-1, MVP, and pyruvate kinase M2 isoform with HIV-1 replication in MDM and thus suggests novel targets for HIV-1 restriction in macrophages, the principal reservoirs for HIV-1 in the central nervous system
Pathobiological implications of mucin (MUC) expression in the outcome of small bowel cancer.
Mucins have been associated with survival in various cancer patients, but there have been no studies of mucins in small bowel carcinoma (SBC). In this study, we investigated the relationships between mucin expression and clinicopathologic factors in 60 SBC cases, in which expression profiles of MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC6 and MUC16 in cancer and normal tissues were examined by immunohistochemistry. MUC1, MUC5AC and MUC16 expression was increased in SBC lesions compared to the normal epithelium, and expression of these mucins was related to clinicopathologic factors, as follows: MUC1 [tumor location (pβ=β0.019), depth (pβ=β0.017) and curability (pβ=β0.007)], MUC5AC [tumor location (pβ=β0.063) and lymph node metastasis (pβ=β0.059)], and MUC16 [venous invasion (pβ=β0.016) and curability (pβ=β0.016)]. Analysis of 58 cases with survival data revealed five factors associated with a poor prognosis: poorly-differentiated or neuroendocrine histological type (
Cooperative stimulation of vascular endothelial growth factor expression by hypoxia and reactive oxygen species: the effect of targeting vascular endothelial growth factor and oxidative stress in an orthotopic xenograft model of bladder carcinoma
Elevated thymidine phosphorylase has been shown to correlate with increased angiogenesis and poor prognosis in many cancers including transitional cell carcinoma of the bladder. In vitro studies have demonstrated that thymidine phosphorylase activity causes cellular oxidative stress and increases secretion of vascular endothelial growth factor. In this study, we show that thymidine phosphorylase activity also augments levels of the hypoxia-inducible factor-1Ξ± during in vitro hypoxia, and that thymidine phosphorylase activity and hypoxia act in concert to increase vascular endothelial growth factor (VEGF) secretion. We also demonstrate that thymidine phosphorylase overexpression confers tumorigenicity on an orthotopically implanted transitional cell carcinoma cell line. Administration of the antioxidant N-acetylcysteine together with a blocking anti-VEGF antibody abrogates the increase in tumorigenicity. Our results support the increased efficacy of combination approaches to antiangiogenic therapy
Bub1 Is a Fission Yeast Kinetochore Scaffold Protein, and Is Sufficient to Recruit other Spindle Checkpoint Proteins to Ectopic Sites on Chromosomes
The spindle checkpoint delays anaphase onset until all chromosomes have attached in a bi-polar manner to the mitotic spindle. Mad and Bub proteins are recruited to unattached kinetochores, and generate diffusible anaphase inhibitors. Checkpoint models propose that Mad1 and Bub1 act as stable kinetochore-bound scaffolds, to enhance recruitment of Mad2 and Mad3/BubR1, but this remains untested for Bub1. Here, fission yeast FRAP experiments confirm that Bub1 stably binds kinetochores, and by tethering Bub1 to telomeres we demonstrate that it is sufficient to recruit anaphase inhibitors in a kinase-independent manner. We propose that the major checkpoint role for Bub1 is as a signalling scaffold
The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication
The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected
BMJ Open
INTRODUCTION: Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. METHODS AND ANALYSIS: The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence. ETHICS AND DISSEMINATION: Ethical approval for the GOAL study has already been obtained from the Medical Review Ethics Committee region Arnhem-Nijmegen. Additionally and when necessary, approval will also be obtained from national or local institutional review boards in the participating centres. When needed, a standardised data transfer agreement will be provided for participating centres. We plan dissemination of our results in peer-reviewed international scientific journals and through conference presentations. We expect that the results of this unique study will lead to better understanding of worldwide differences in risk factors, causes and outcome of young stroke patients
- β¦