32 research outputs found
Effects of Lycopene on the Initial State of Atherosclerosis in New Zealand White (NZW) Rabbits
BACKGROUND: Lycopene is the main carotenoid in tomatoes, where it is found in high concentrations. Strong epidemiological evidence suggests that lycopene may provide protection against cardiovascular diseases. We therefore studied the effects of lycopene on diet-induced increase in serum lipid levels and the initiation of atherosclerosis in New Zealand White (NZW) rabbits. METHODOLOGY/PRINCIPAL FINDINGS: The animals, divided into four groups of 9 animals each, were fed either a standard diet, a high-cholesterol diet containing 0.5% cholesterol, a high-cholesterol diet containing placebo beadlets, or a high-cholesterol diet plus 5 mg/kg body weight/day of lycopene (in the form of lycopene beadlets), for a period of 4 weeks. We found significantly elevated lycopene plasma levels in the animal group treated with lycopene beadlets. Compared to the high-cholesterol and the placebo group, this was associated with a significant reduction of 50% in total cholesterol and LDL cholesterol serum levels in the lycopene group. The amount of cholesteryl ester in the aorta was significantly decreased by lycopene. However, we did not observe a significant decrease in the extent of aortic surface lipid accumulation in the lycopene group. In addition, no differences in the intima-media thickness among groups were observed. Endothelial-dependent and endothelial-independent vasodilation in isolated rabbit aortic and carotid rings did not differ among any of the animal groups. CONCLUSIONS: Lycopene supplementation for 4 weeks increased lycopene plasma levels in the animals. Although we found strongly reduced total and LDL cholesterol serum levels as well as significantly lower amounts of cholesteryl ester in the aortae in the lycopene-treated group, no significant differences in initial lesions in the aortae were detected
Diagnostic delay for giant cell arteritis – a systematic review and meta-analysis
Background Giant cell arteritis (GCA), if untreated, can lead to blindness and stroke. The study’s objectives were to (1) determine a new evidence-based benchmark of the extent of diagnostic delay for GCA and (2) examine the role of GCA-specific characteristics on diagnostic delay. Methods Medical literature databases were searched from inception to November 2015. Articles were included if reporting a time-period of diagnostic delay between onset of GCA symptoms and diagnosis. Two reviewers assessed the quality of the final articles and extracted data from these. Random-effects meta-analysis was used to pool the mean time-period (95% confidence interval (CI)) between GCA symptom onset and diagnosis, and the delay observed for GCA-specific characteristics. Heterogeneity was assessed by I 2 and by 95% prediction interval (PI). Results Of 4128 articles initially identified, 16 provided data for meta-analysis. Mean diagnostic delay was 9.0 weeks (95% CI, 6.5 to 11.4) between symptom onset and GCA diagnosis (I 2 = 96.0%; P < 0.001; 95% PI, 0 to 19.2 weeks). Patients with a cranial presentation of GCA received a diagnosis after 7.7 (95% CI, 2.7 to 12.8) weeks (I 2 = 98.4%; P < 0.001; 95% PI, 0 to 27.6 weeks) and those with non-cranial GCA after 17.6 (95% CI, 9.7 to 25.5) weeks (I 2 = 96.6%; P < 0.001; 95% PI, 0 to 46.1 weeks). Conclusions The mean delay from symptom onset to GCA diagnosis was 9 weeks, or longer when cranial symptoms were absent. Our research provides an evidence-based benchmark for diagnostic delay of GCA and supports the need for improved public awareness and fast-track diagnostic pathways
Polyphenols Sensitization Potentiates Susceptibility of MCF-7 and MDA MB-231 Cells to Centchroman
Polyphenols as “sensitizers” together with cytotoxic drugs as “inducers” cooperate to trigger apoptosis in various cancer cells. Hence, their combination having similar mode of mechanism may be a novel approach to enhance the efficacy of inducers. Additionally, this will also enable to achieve the physiological concentrations facilitating significant increase in the activity at concentrations which the compound can individually provide. Here we propose that polyphenols (Resveratrol (RES) and Curcumin (CUR)) pre-treatment may sensitize MCF-7/MDA MB-231 (Human Breast Cancer Cells, HBCCs) to Centchroman (CC, antineoplastic agent). 6 h pre-treated cells with 10 µM RES/CUR and 100 µM RES/30 µM CUR doses, followed by 10 µM CC for 18 h were investigated for Ser-167 ER-phosphorylation, cell cycle arrest, redox homeostasis, stress activated protein kinase (SAPKs: JNK and p38 MAPK) pathways and downstream apoptosis effectors. Low dose RES/CUR enhances the CC action through ROS mediated JNK/p38 as well as mitochondrial pathway in MCF-7 cells. However, RES/CUR sensitization enhanced apoptosis in p53 mutant MDA MB-231 cells without/with involvement of ROS mediated JNK/p38 adjunct to Caspase-9. Contrarily, through high dose sensitization in CC treated cells, the parameters remained unaltered as in polyphenols alone. We conclude that differential sensitization of HBCCs with low dose polyphenol augments apoptotic efficacy of CC. This may offer a novel approach to achieve enhanced action of CC with concomitant reduction of side effects enabling improved management of hormone-dependent breast cancer
Cell-scale degradation of peritumoural extracellular matrix fibre network and its role within tissue-scale cancer invasion
Local cancer invasion of tissue is a complex, multiscale process which plays
an essential role in tumour progression. Occurring over many different temporal
and spatial scales, the first stage of invasion is the secretion of matrix
degrading enzymes (MDEs) by the cancer cells that consequently degrade the
surrounding extracellular matrix (ECM). This process is vital for creating
space in which the cancer cells can progress and it is driven by the activities
of specific matrix metalloproteinases (MMPs). In this paper, we consider the
key role of two MMPs by developing further the novel two-part multiscale model
introduced in [33] to better relate at micro-scale the two micro-scale
activities that were considered there, namely, the micro-dynamics concerning
the continuous rearrangement of the naturally oriented ECM fibres within the
bulk of the tumour and MDEs proteolytic micro-dynamics that take place in an
appropriate cell-scale neighbourhood of the tumour boundary. Focussing
primarily on the activities of the membrane-tethered MT1-MMP and the soluble
MMP-2 with the fibrous ECM phase, in this work we investigate the MT1-MMP/MMP-2
cascade and its overall effect on tumour progression. To that end, we will
propose a new multiscale modelling framework by considering the degradation of
the ECM fibres not only to take place at macro-scale in the bulk of the tumour
but also explicitly in the micro-scale neighbourhood of the tumour interface as
a consequence of the interactions with molecular fluxes of MDEs that exercise
their spatial dynamics at the invasive edge of the tumour
Structured models of cell migration incorporating molecular binding processes
The dynamic interplay between collective cell movement and the various
molecules involved in the accompanying cell signalling mechanisms plays a
crucial role in many biological processes including normal tissue development
and pathological scenarios such as wound healing and cancer. Information about
the various structures embedded within these processes allows a detailed
exploration of the binding of molecular species to cell-surface receptors
within the evolving cell population. In this paper we establish a general
spatio-temporal-structural framework that enables the description of molecular
binding to cell membranes coupled with the cell population dynamics. We first
provide a general theoretical description for this approach and then illustrate
it with two examples arising from cancer invasion