15,808 research outputs found

    Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape

    Full text link
    Here, cosmology of the late and future universe is obtained from f(R)f(R)-gravity with non-linear curvature terms R2R^2 and R3R^3 (RR being the Ricci scalar curvature). It is different from f(R)f(R)-dark enrgy models, where non-linear curvature terms are taken as gravitational alternative of dark energy. In the present model, neither linear nor no-linear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms in the Friedmann equation derived from f(R)f(R)-gravitational equations. It has advantage over f(R)f(R)- dark energy models in the sense that the present model satisfies WMAP results and expands as ∼t2/3\sim t^{2/3} during matter-dominance. So, it does not have problems due to which f(R)f(R)-dark energy models are criticized. Curvature-induced dark energy, obtained here, mimics phantom. Different phases of this model, including acceleration and deceleration during phantom phase, are investigated here.It is found that expansion of the universe will stop at the age (3.87t0+694.4kyr)(3.87 t_0 + 694.4 {\rm kyr}) (t0t_0 being the present age of the universe) and after this epoch, it will contract and collapse by the time (336.87t0+694.4kyr)(336.87 t_0 + 694.4 {\rm kyr}). Further,it is shown that universe will escape predicted collapse (obtained using classical mechanics) on making quantum gravity corrections relevant near collapse time due to extremely high energy density and large curvature analogous to the state of very early universe. Interestingly, cosmological constant is also induced here, which is very small in classical domain, but very high in quantum domain.Comment: 33 page
    • …
    corecore