8,273 research outputs found
The physics goals of the TESLA project
As next generation e+e- linear collider the superconducting accelerator
project TESLA has been proposed. In this note the physics potential goals of
this project, which is highly complementary to LHC, are described.Comment: Invited talk presented at the ``Seventh Topical Seminar on The legacy
of LEP and SLC'', Siena, October 200
Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3
In this contribution we briefly describe our recent results on the properties
of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys
using Subaru telescope, and through the comparison with samples at lower
redshift ranges we discuss the evolution of star-forming galaxies in the early
universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235,
Galaxies Across the Hubble Time, J. Palous & F. Combes, ed
CO(J=6-5) Observations of the Quasar SDSS1044-0125 at z = 5.8
We present a result of the quasar CO(J=6-5) observations of SDSSp
J104433.04-012502.2 at z = 5.8. Ten-days observations with the Nobeyama
Millimeter Array yielded an rms noise level of ~ 2.1 mJy/beam in a frequency
range from 101.28 GHz to 101.99 GHz at a velocity resolution of 120 km/s. No
significant clear emission line was detected in the observed field and
frequency range. Three sigma upper limit on the CO(J=6-5) luminosity of the
object is 2.8 x 10^10 K km/s pc^2, corresponding to a molecular gas mass of 1.2
x 10^11 Solar Mass, if a conversion factor of 4.5 Solar Mass /(K km/s pc^2) is
adopted. The obtained upper limit on CO luminosity is slightly smaller than
those observed in quasars at z=4-5 toward which CO emissions are detected.Comment: 4 pages, 3 figures, LaTeX2e, to appear in Publication of Astronomical
Society of Japan (PASJ), Postscript file available at
ftp://ftp.kusastro.kyoto-u.ac.jp/pub/iwata/preprint/sdss1044/sdss.ps.g
Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2
We use the Keck Deep Fields UGRI catalog of z~4, 3, and 2 UV-selected
galaxies to study the evolution of the rest-frame 1700A luminosity density at
high redshift. The ability to reliably constrain the contribution of faint
galaxies is critical and our data do so as they reach to M*+2 even at z~4 and
deeper still at lower redshifts. We find that the luminosity density at high
redshift is dominated by the hitherto poorly studied galaxies fainter than L*,
and, indeed, the the bulk of the UV light in the high-z Universe comes from
galaxies in the luminosity range L=0.1-1L*. It is these faint galaxies that
govern the behavior of the total UV luminosity density. Overall, there is a
gradual rise in luminosity density starting at z~4 or earlier, followed by a
shallow peak or a plateau within z~3--1, and then followed by the well-know
plunge at lower redshifts. Within this total picture, luminosity density in
sub-L* galaxies evolves more rapidly at high redshift, z>~2, than that in more
luminous objects. However, this is reversed at lower redshifts, z<~1, a
reversal that is reminiscent of galaxy downsizing. Within the context of the
models commonly used in the observational literature, there seemingly aren't
enough faint or bright LBGs to maintain ionization of intergalactic gas even as
late as z~4. This is particularly true at earlier epochs and even more so if
the faint-end evolutionary trends we observe at z~3 and 4 continue to higher
redshifts. Apparently the Universe must be easier to reionize than some recent
studies have assumed. Nevertheless, sub-L* galaxies do dominate the total UV
luminosity density at z>~2 and this dominance further highlights the need for
follow-up studies that will teach us more about these very numerous but thus
far largely unexplored systems.Comment: Accepted for publication in the Astrophysical Journal. Abstract
abridge
Continuous background produced by the graphite collimator
開始ページ、終了ページ: 冊子体のページ付
- …