38 research outputs found

    Multiwavelength observations of short time-scale variability in NGC 4151. I. Ultraviolet observations

    Full text link
    We present the results of an intensive ultraviolet monitoring campaign on the Seyfert 1 galaxy NGC 4151, as part of an effort to study its short time-scale variability over a broad range in wavelength. The nucleus of NGC 4151 was observed continuously with the {\it International Ultraviolet Explorer} (IUE) for 9.3 days, yielding a pair of LWP and SWP spectra every \sim70 minutes, and during four-hour periods for 4 days prior to and 5 days after the continuous monitoring period. The sampling frequency of the observations is an order of magnitude higher than that of any previous UV monitoring campaign on a Seyfert galaxy. The continuum fluxes in bands from 1275 \AA\ to 2688 \AA\ went through four significant and well-defined ``events'' of duration 2 -- 3 days during the continuous monitoring period. We find that the amplitudes of the continuum variations decrease with increasing wavelength, which extends a general trend for this and other Seyfert galaxies to smaller time scales (i.e., a few days). The continuum variations in all of the UV bands are {\it simultaneous} to within an accuracy of about 0.15 days, providing a strict constraint on continuum models. The emission-line light curves show only one major event during the continuous monitoring (a slow rise followed by a shallow dip), and do not correlate well with continuum light curves over the (short) duration of the campaign, because the time scale for continuum variations is apparently smaller than the response times of the emission lines.Comment: 39 pages, LaTeX, including 7 PostScript figures; To appear in the ApJ (October 20, 1996) Vol. 47

    Multiwavelength observations of short time-scale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability

    Full text link
    This paper combines data from the three preceding papers in order to analyze the multi-waveband variability and spectral energy distribution of the Seyfert~1 galaxy NGC~4151 during the December 1993 monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium energy (\sim1.5~keV) X-rays, with a normalized variability amplitude (NVA) of 24\%. Weaker (NVA = 6\%) variations (uncorrelated with those at lower energies) were seen at soft γ\gamma-ray energies of \sim100~keV. No significant variability was seen in softer (0.1--1~keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9\% to 1\% as the wavelength increased from 1275~\AA\ to 6900~\AA. These data do not probe extreme ultraviolet (1200~\AA\ to 0.1~keV) or hard X-ray (2--50~keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of \ls0.15~day between 1275~\AA\ and the other ultraviolet bands, \ls0.3~day between 1275~\AA\ and 1.5~keV, and \ls1~day between 1275~\AA\ and 5125~\AA. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-waveband AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well-fitted with a very steep, red power-law (a=2.5 a = -2.5 ). If photons emitted at a ``primary" waveband are absorbed by nearby material and ``reprocessed" to produce emission at a secondary waveband, causality arguments require that variations in the secondary band follow those in the primary band. The tight interband correlation and limits on the ultraviolet andComment: 35 pages, LaTeX (including aaspp4), including 7 PostScript figures; To appear in the ApJ (October 20, 1996) Vol. 47
    corecore