573 research outputs found
A new physical interpretation of optical and infrared variability in quasars
Changing-look quasars are a recently identified class of active galaxies in
which the strong UV continuum and/or broad optical hydrogen emission lines
associated with unobscured quasars either appear or disappear on timescales of
months to years. The physical processes responsible for this behaviour are
still debated, but changes in the black hole accretion rate or accretion disk
structure appear more likely than changes in obscuration. Here we report on
four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift
of whose UV continuum and broad hydrogen emission lines have faded,
and then returned over the past 20 years. The change in this quasar
was initially identified in the infrared, and an archival spectrum from 2010
shows an intermediate phase of the transition during which the flux below
rest-frame 3400\AA\ has decreased by close to an order of magnitude.
This combination is unique compared to previously published examples of
changing-look quasars, and is best explained by dramatic changes in the
innermost regions of the accretion disk. The optical continuum has been rising
since mid-2016, leading to a prediction of a rise in hydrogen emission line
flux in the next year. Increases in the infrared flux are beginning to follow,
delayed by a 3 year observed timescale. If our model is confirmed, the
physics of changing-look quasars are governed by processes at the innermost
stable circular orbit (ISCO) around the black hole, and the structure of the
innermost disk. The easily identifiable and monitored changing-look quasars
would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data
links on GitHub, https://github.com/d80b2t/WISE_L
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Role of the dimerized gap due to anion ordering in spin-density wave phase of (TMTSF)ClO at high magnetic fields
Magnetoresistance measurements have been carried out along the highly
conducting a axis in the FISDW phase of hydrogened and deuterated
(TMTSF)ClO for various cooling rates through the anion ordering
temperature. With increasing the cooling rate, a) the high field phase boundary
, observed at 27 T in hydrogened samples for slowly cooled,
is shifted towards a lower field, b) the last semimetallic SDW phase below
is suppressed, and c) the FISDW insulating phase above
is enhanced in both salts. The cooling rate dependence of
the FISDW transition and of in both salts can be explained
by taking into account the peculiar SDW nesting vector stabilized by the
dimerized gap due to anion ordering.Comment: 6pages,6figures(EPS), accepted for publication in PR
The first high-redshift changing-look quasars
We report on three redshift quasars with dramatic changes in their C IV
emission lines, the first sample of changing-look quasars (CLQs) at high
redshift. This is also the first time the changing-look behaviour has been seen
in a high-ionisation emission line. SDSS J1205+3422, J1638+2827, and J2228+2201
show interesting behaviour in their observed optical light curves, and
subsequent spectroscopy shows significant changes in the C IV broad emission
line, with both line collapse and emergence being displayed on rest-frame
timescales of 240-1640 days. These are rapid changes, especially when
considering virial black hole mass estimates of
for all three quasars. Continuum and emission line measurements from the three
quasars show changes in the continuum-equivalent width plane with the CLQs seen
to be on the edge of the full population distribution, and showing indications
of an intrinsic Baldwin effect. We put these observations in context with
recent state-change models, and note that even in their observed low-state, the
C IV CLQs are generally above 5\% in Eddington luminosity.Comment: 12 pages, 7 figures, 4 tables. All data, analysis code and text are
fully available at: github.com/d80b2t/CIV_CLQs. Comments, questions and
suggestions welcome and encourage
The first high-redshift changing-look quasars
We report on three redshift z > 2 quasars with dramatic changes in their C IV emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionization emission line. SDSS J1205+3422, J1638+2827, and J2228 + 2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C IV broad emission line, with both line collapse and emergence being displayed on rest-frame time-scales of ∼240–1640 d. These are rapid changes, especially when considering virial black hole mass estimates of M_(BH) > 10⁹M⊙ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C IV CLQs are generally above ∼5 per cent in Eddington luminosity
The High Magnetic Field Phase Diagram of a Quasi-One Dimensional Metal
We present a unique high magnetic field phase of the quasi-one dimensional
organic conductor (TMTSF)ClO. This phase, termed "Q-ClO", is
obtained by rapid thermal quenching to avoid ordering of the ClO anion. The
magnetic field dependent phase of Q-ClO is distinctly different from that
in the extensively studied annealed material. Q-ClO exhibits a spin density
wave (SDW) transition at 5 K which is strongly magnetic field
dependent. This dependence is well described by the theoretical treatment of
Bjelis and Maki. We show that Q-ClO provides a new B-T phase diagram in the
hierarchy of low-dimensional organic metals (one-dimensional towards
two-dimensional), and describe the temperature dependence of the of the quantum
oscillations observed in the SDW phase.Comment: 10 pages, 4 figures, preprin
Instrumentation for Millimeter-wave Magnetoelectrodynamic Investigations of Low-Dimensional Conductors and Superconductors
We describe instrumentation for conducting high sensitivity millimeter-wave
cavity perturbation measurements over a broad frequency range (40-200 GHz) and
in the presence of strong magnetic fields (up to 33 tesla). A Millimeter-wave
Vector Network Analyzer (MVNA) acts as a continuously tunable microwave source
and phase sensitive detector (8-350 GHz), enabling simultaneous measurements of
the complex cavity parameters (resonance frequency and Q-value) at a rapid
repetition rate (approx. 10 kHz). We discuss the principal of operation of the
MVNA and the construction of a probe for coupling the MVNA to various
cylindrical resonator configurations which can easily be inserted into a high
field magnet cryostat. We also present several experimental results which
demonstrate the potential of the instrument for studies of low-dimensional
conducting systems.Comment: 20 pages including fig
- …