28 research outputs found

    Evidence-Based Guideline on Laparoscopy in Pregnancy: Commissioned by the British Society for Gynaecological Endoscopy (BSGE) Endorsed by the Royal College of Obstetricians & Gynaecologists (RCOG).

    Get PDF
    Laparoscopy is widely utilised to diagnose and treat acute and chronic, gynaecological and general surgical conditions. It has only been in recent years that laparoscopy has become an acceptable surgical alternative to open surgery in pregnancy. To date there is little clinical guidance pertaining to laparoscopic surgery in pregnancy. This is why the BSGE commissioned this guideline. MEDLINE, EMBASE, CINAHL and the Cochrane library were searched up to February 2017 and evidence was collated and graded following the NICE-approved process. The conditions included in this guideline are laparoscopic management of acute appendicitis, acute gall bladder disease and symptomatic benign adnexal tumours in pregnancy. The intended audience for this guideline is obstetricians and gynaecologists in secondary and tertiary care, general surgeons and anaesthetists. However, only laparoscopists who have adequate laparoscopic skills and who perform complex laparoscopic surgery regularly should undertake laparoscopy in pregnant women, since much of the evidence stems from specialised centres

    Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut

    Get PDF
    Key message Genetic mapping identified large number of epistatic interactions indicating the complex genetic architecture for stem rot disease resistance. Abstract Groundnut (Arachis hypogaea) is an important global crop commodity and serves as a major source of cooking oil, diverse confectionery preparations and livestock feed. Stem rot disease caused by Sclerotium rolfsii is the most devastating disease of groundnut and can cause up to 100% yield loss. Genomic-assisted breeding (GAB) has potential for accelerated development of stem rot resistance varieties in short period with more precision. In this context, linkage analysis and quantitative trait locus (QTL) mapping for resistance to stem rot disease was performed in a bi-parental recombinant inbred line population developed from TG37A (susceptible) × NRCG-CS85 (resistant) comprising of 270 individuals. Genotyping-by-sequencing approach was deployed to generate single nucleotide polymorphism (SNP) genotyping data leading to development of a genetic map with 585 SNP loci spanning map distance of 2430 cM. QTL analysis using multi-season phenotyping and genotyping data could not detect any major main-effect QTL but identified 44 major epistatic QTLs with phenotypic variation explained ranging from 14.32 to 67.95%. Large number interactions indicate the complexity of genetic architecture of resistance to stem rot disease. A QTL of physical map length 5.2 Mb identified on B04 comprising 170 different genes especially leucine reach repeats, zinc finger motifs and ethyleneresponsive factors, etc., was identified. The identified genomic regions and candidate genes will further validate and facilitate marker development to deploy GAB for developing stem rot disease resistance groundnut varieties

    Broad-based resistance to pigeonpea sterility mosaic disease in wild relatives of pigeonpea (Cajanus: Phaseoleae)

    Get PDF
    Sterility mosaic disease (SMD), an important biotic constraint on pigeonpea (Cajanus cajan) in the Indian subcontinent, is caused by Pigeonpea sterility mosaic virus (PPSMV) transmitted by the eriophyid mite, Aceria cajani. Distinct PPSMV isolates occur in different geographical regions and broad-based resistance to all these isolates is scarce in cultivated pigeonpea germplasm. Wild relatives of pigeonpea, which are known to possess resistance to several pests and diseases, were evaluated for broad-based SMD resistance. One hundred and fifteen wild Cajanus accessions from six species (C. albicans, C. platycarpus, C. cajanifolius, C. lineatus, C. scarabaeoides and C. sericeus) were evaluated against three PPSMV isolates prevailing in peninsular India. Evaluations were done under greenhouse conditions in endemic locations of each isolate through mite-mediated virus inoculation. Fifteen accessions showed resistance to all three isolates: ICP 15614, 15615, 15626, 15684, 15688, 15700, 15701, 15725, 15734, 15736, 15737, 15740, 15924, 15925 and 15926. Most of the wild accessions did not support mite multiplication. The majority of the accessions resistant to PPSMV following inoculations with viruliferous mites were susceptible by graft inoculation, suggesting that vector resistance is conferring resistance to infection with PPSMV. The 15 accessions identified as being resistant to infection to all three virus isolates tested are cross compatible with pigeonpea by traditional breeding. They are therefore useful for exploitation in breeding programmes to increase both the level of SMD resistance and to diversify its genetic base in the cultivated pigeonpea gene pool
    corecore