970 research outputs found

    Growth of GaN films on porous SiC substrate by molecular-beam epitaxy

    Get PDF
    Porous SiC (PSiC) substrates were used for the growth of GaN by reactive molecular-beam epitaxy with ammonia as the nitrogen source. Improved quality of GaNfilms has been demonstrated for growth on PSiC substrates, as compared to that on standard 6H–SiC substrates. Cross-sectional transmission electron microscopy and electron diffraction showed a reduction in dislocation density and a higher degree of lattice and thermal relaxation in the GaNfilmsgrown on porous substrates. The submicron GaNfilms exhibit a rocking curve linewidth of 3.3 arcmin for (0002) diffraction and 13.7 arcmin for (101̄2) diffraction. Low-temperature photoluminescence showed an excitonic transition with a full width at half maximum of 9.5 meV at 15 K, as well as high quantum efficiency, on the GaN layer grown on PSiC when the thin skin layer on porous SiC was removed before growth

    Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy

    Get PDF
    We report on the growth of and evolution of defects in GaN epilayers having single- and double-layer SiNx nanoporous insertion layers. The SiNx was formed in situ in the growth chamber of an organometallic vapor-phase epitaxy system by simultaneous flow of diluted silane and ammonia. The GaN epilayers and SiNx interlayers were grown on 6H-SiC substrates using three different nucleation layers, namely, low-temperature GaN, high-temperature GaN, and high-temperature AlN nucleation layers. X-ray-diffraction rocking curves and cross-sectional and plan-view transmission electron microscope analyses indicated that a nanoporous SiNx layer can reduce the dislocations density in the GaN overgrown layer to ∼3×108cm−2 range; below this level the defect blocking effect of SiNx would saturate. Therefore the insertion of a second SiNx layer becomes much less effective in reducing dislocations, although it continues to reduce the point defects, as suggested by time-resolved photoluminescence measurements. The insertion of SiNx interlayers was found to improve significantly the mechanical strength of the GaN epilayers resulting in a much lower crack line density

    Low dislocation densities and long carrier lifetimes in GaN thin films grown on a SiNx nanonetwork

    Get PDF
    Significant improvement of structural and optical qualities of GaNthin films on sapphire substrates was achieved by metal organic chemical vapor deposition with in situ SiNxnanonetwork. Transmission electron microscope (TEM) studies revealed that screw- and edge-type dislocations were reduced to 4.4×107 and 1.7×107cm−2, respectively, for a ∼5.5-μm-thick layer. Furthermore, room temperature carrier lifetimes of 2.22 and 2.49ns were measured by time-resolved photoluminescence(TRPL) for samples containing single and double SiNx network layers, respectively, representing a significant improvement over the previous studies. The consistent trends among the TEM,x-ray diffraction, and TRPL measurements suggest that in situ SiNx network reduces line defects effectively as well as the point-defect-related nonradiative centers

    Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy

    Get PDF
    We report on the reduction of threading dislocations in GaN overlayers grown by organometallic vapor phase epitaxy on micro-porous TiN networks. These networks were obtained by in situannealing of thin Ti layers deposited in a metalization chamber, on the (0001) face of GaN templates. Observations by transmission electron microscopy indicate dislocation reduction by factors of up to 10 in GaN layers grown on TiN networks compared with the control GaN.X-ray diffraction shows that GaNgrown on the TiN network has a smaller (102) plane peak width (4.6 arcmin) than the control GaN (7.8 arcmin). In low temperature photoluminescence spectra, a narrow excitonic full-width-at-half-maximum of 2.4 meV was obtained, as compared to 3.0 meV for the control GaN, confirming the improved crystalline quality of the overgrown GaN layers

    Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors

    Get PDF
    The elevated metabolic requirements of cancer cells reflect their rapid growth and proliferation and are met through mutations in oncogenes and tumor suppressor genes that reprogram cellular processes. For example, in tuberous sclerosis complex (TSC)-related tumors, the loss of TSC1/2 function causes constitutive mTORC1 activity, which stimulates glycolysis, resulting in glucose addiction in vitro. In research published in Cell and Bioscience, Jiang and colleagues show that pharmacological restriction of glucose metabolism decreases tumor progression in a TSC xenograft model

    Dislocation reduction in GaN grown on porous TiN networks by metal-organic vapor-phase epitaxy

    Get PDF
    We report on the effectiveness of porous TiN nanonetworks on the reduction of threading dislocations (TDs) in GaN grown by metal-organic vapor-phase epitaxy (MOVPE). The porous TiN networks were formed by in situ annealing of thin-deposited Ti films deposited ex situ on GaN templates within the MOVPE growth chamber. Different annealing parameters in relation to surface porosity of TiN networks were investigated. Transmission electron micrographs indicated dislocation reduction by factors of up to 10 in GaN layers grown on the TiN nanonetwork, compared with a control sample. TiN prevented many dislocations present in the GaN templates from penetrating into the upper layer. Microscale epitaxial lateral overgrowth of GaN above TiN also contributed to TD reduction. The surface porosity of the TiN network had a strong impact on the efficiency of TD reduction. X-ray-diffraction and time-resolved photoluminescence measurements further confirmed the improved GaN quality

    mTOR signaling: implications for cancer and anticancer therapy

    Get PDF
    Mounting evidence links deregulated protein synthesis to tumorigenesis via the translation initiation factor complex eIF4F. Components of this complex are often overexpressed in a large number of cancers and promote malignant transformation in experimental systems. mTOR affects the activity of the eIF4F complex by phosphorylating repressors of the eIF4F complex, the eIF4E binding proteins. The immunosuppressant rapamycin specifically inhibits mTOR activity and retards cancer growth. Importantly, mutations in upstream negative regulators of mTOR cause hamartomas, haemangiomas, and cancers that are sensitive to rapamycin treatment. Such mutations lead to increased eIF4F formation and consequently to enhanced translation initiation and cell growth. Thus, inhibition of translation initiation through targeting the mTOR-signalling pathway is emerging as a promising therapeutic option

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex
    • …
    corecore