4,002 research outputs found
On the structure of line-driven winds near black holes
A general physical mechanism of the formation of line-driven winds at the
vicinity of strong gravitational field sources is investigated in the frame of
General Relativity. We argue that gravitational redshifting should be taken
into account to model such outflows. The generalization of the Sobolev
approximation in the frame of General Relativity is presented. We consider all
processes in the metric of a nonrotating (Schwarzschild) black hole. The
radiation force that is due to absorbtion of the radiation flux in lines is
derived. It is demonstrated that if gravitational redshifting is taken into
account, the radiation force becomes a function of the local velocity gradient
(as in the standard line-driven wind theory) and the gradient of . We
derive a general relativistic equation of motion describing such flow. A
solution of the equation of motion is obtained and confronted with that
obtained from the Castor, Abbott & Klein (CAK) theory. It is shown that the
proposed mechanism could have an important contribution to the formation of
line-driven outflows from compact objects.Comment: 20 pages, submitted to Ap
Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior
Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees
of freedom can reside in the interior of a black hole. We suggest that this is
a consequence of the fact that the volume of any interior sphere of finite
surface area simply vanishes. Obviously, this is not the case in general
relativity. However, we show that such a phenomenon does occur in various
gravitational theories which admit a spontaneously induced general relativity.
In such theories, due to a phase transition (one parameter family degenerates)
which takes place precisely at the would have been horizon, the recovered
exterior Schwarzschild solution connects, by means of a self-similar transition
profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume
and a locally varying Newton constant. This constitutes the so-called
'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010
Non-monotonic orbital velocity profiles around rapidly rotating Kerr-(anti-)de Sitter black holes
It has been recently demonstrated that the orbital velocity profile around
Kerr black holes in the equatorial plane as observed in the locally
non-rotating frame exhibits a non-monotonic radial behaviour. We show here that
this unexpected minimum-maximum feature of the orbital velocity remains if the
Kerr vacuum is generalized to the Kerr-de Sitter or Kerr-anti-de Sitter metric.
This is a new general relativity effect in Kerr spacetimes with non-vanishing
cosmological constant. Assuming that the profile of the orbital velocity is
known, this effect constrains the spacetime parameters.Comment: 9 pages, 4 figures, accepted for Class. Quant. Gra
The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken
The replacement histone H2A.Z is variously reported
as being linked to gene expression and preventing the
spread of heterochromatin in yeast, or concentrated
at heterochromatin in mammals. To resolve this
apparent dichotomy, affinity-purified antibodies
against the N-terminal region of H2A.Z, in both a triacetylatedandnon-
acetylatedstate, areusedin native
chromatin immmuno-precipitation experiments with
mononucleosomes from three chicken cell types. The
hyperacetylated species concentrates at the 50 end of
active genes, both tissue specific and housekeeping
but is absent from inactive genes, while the
unacetylated form is absent from both active and
inactive genes. A concentration of H2A.Z is also
found at insulators under circumstances implying a
link to barrier activity but not to enhancer blocking.
Although acetylated H2A.Z is widespread throughout
the interphase genome, at mitosis its acetylation is
erased, the unmodified form remaining. Thus,
although H2A.Z may operate as an epigenetic marker
for active genes, its N-terminal acetylation does not
A stochastic template placement algorithm for gravitational wave data analysis
This paper presents an algorithm for constructing matched-filter template
banks in an arbitrary parameter space. The method places templates at random,
then removes those which are "too close" together. The properties and
optimality of stochastic template banks generated in this manner are
investigated for some simple models. The effectiveness of these template banks
for gravitational wave searches for binary inspiral waveforms is also examined.
The properties of a stochastic template bank are then compared to the
deterministically placed template banks that are currently used in
gravitational wave data analysis.Comment: 14 pages, 11 figure
The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken
The replacement histone H2A.Z is variously reported
as being linked to gene expression and preventing the
spread of heterochromatin in yeast, or concentrated
at heterochromatin in mammals. To resolve this
apparent dichotomy, affinity-purified antibodies
against the N-terminal region of H2A.Z, in both a triacetylatedandnon-
acetylatedstate, areusedin native
chromatin immmuno-precipitation experiments with
mononucleosomes from three chicken cell types. The
hyperacetylated species concentrates at the 50 end of
active genes, both tissue specific and housekeeping
but is absent from inactive genes, while the
unacetylated form is absent from both active and
inactive genes. A concentration of H2A.Z is also
found at insulators under circumstances implying a
link to barrier activity but not to enhancer blocking.
Although acetylated H2A.Z is widespread throughout
the interphase genome, at mitosis its acetylation is
erased, the unmodified form remaining. Thus,
although H2A.Z may operate as an epigenetic marker
for active genes, its N-terminal acetylation does not
Centrifugally driven electrostatic instability in extragalactic jets
The stability problem of the rotation induced electrostatic wave in
extragalactic jets is presented. Solving a set of equations describing dynamics
of a relativistic plasma flow of AGN jets, an expression of the instability
rate has been derived and analyzed for typical values of AGNs. The growth rate
was studied versus the wave length and the inclination angle and it has been
found that the instability process is much efficient with respect to the
accretion disk evolution, indicating high efficiency of the instability.Comment: 7 pages, 4 figure
Parametric resonant acceleration of particles by gravitational waves
We study the resonant interaction of charged particles with a gravitational
wave propagating in the non-empty interstellar space in the presence of a
uniform magnetic field. It is found that this interaction can be cast in the
form of a parametric resonance problem which, besides the main resonance,
allows for the existence of many secondary ones. Each of them is associated
with a non-zero resonant width, depending on the amplitude of the wave and the
energy density of the interstellar plasma. Numerical estimates of the
particles' energisation and the ensuing damping of the wave are given.Comment: LaTeX file, 16 page
Energy Distribution in Melvin's Magnetic Universe
We use the energy-momentum complexes of Landau and Lifshitz and Papapetrou to
obtain the energy distribution in Melvin's magnetic universe. For this
space-time we find that these definitions of energy give the same and
convincing results. The energy distribution obtained here is the same as we
obtained earlier for the same space-time using the energy-momentum complex of
Einstein. These results uphold the usefulness of the energy-momentum complexes.Comment: 8 pages, RevTex, no figure
Compton Scattering by Static and Moving Media I. The Transfer Equation and Its Moments
Compton scattering of photons by nonrelativistic particles is thought to play
an important role in forming the radiation spectrum of many astrophysical
systems. Here we derive the time-dependent photon kinetic equation that
describes spontaneous and induced Compton scattering as well as absorption and
emission by static and moving media, the corresponding radiative transfer
equation, and their zeroth and first moments, in both the system frame and in
the frame comoving with the medium. We show that it is necessary to use the
correct relativistic differential scattering cross section in order to obtain a
photon kinetic equation that is correct to first order in epsilon/m_e, T_e/m_e,
and V, where epsilon is the photon energy, T_e and m_e are the electron
temperature and rest mass, and V is the electron bulk velocity in units of the
speed of light. We also demonstrate that the terms in the radiative transfer
equation that are second-order in V usually should be retained, because if the
radiation energy density is sufficiently large compared to the radiation flux,
the effects of bulk Comptonization described by the terms that are second-order
in V are at least as important as the effects described by the terms that are
first-order in V, even when V is small. Our equations are valid for systems of
arbitrary optical depth and can therefore be used in both the free-streaming
and the diffusion regimes. We demonstrate that Comptonization by the electron
bulk motion occurs whether or not the radiation field is isotropic or the bulk
flow converges and that it is more important than thermal Comptonization if V^2
> 3 T_e/m_e.Comment: 31 pages, accepted for publication in The Astrophysical Journa
- …