11 research outputs found

    Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency: effects on the immune system

    No full text
    Natural zeolites are crystalline aluminosilicates with unique adsorption, cation-exchange, and catalytic properties that have multiple uses in industry and agriculture. TMAZ, a natural zeolite clinoptilolite with enhanced physicochemical properties, is the basis of the dietary supplements Megamin and Lycopenomin, which have demonstrated antioxidant activity in humans. The aim of this prospective, open, and controlled parallel-group study was to investigate the effects of supplementation with TMAZ on the cellular immune system in patients undergoing treatment for immunodeficiency disorder. A total of 61 patients were administered daily TMAZ doses of 1.2 g (Lycopenomin) and 3.6 g (Megamin) for 6 to 8 weeks, during which the patients' primary medical therapy was continued unchanged. Blood and lymphocyte counts were performed at baseline and at the end of the study. Blood count parameters were not relevantly affected in either of the two treatment groups. Megamin administration resulted in significantly increased CD4+, CD19+, and HLA-DR+ lymphocyte counts and a significantly decreased CD56+ cell count. Lycopenomin was associated with an increased CD3+ cell count and a decreased CD56+ lymphocyte count. No adverse reactions to the treatments were observed

    Silicon: The Health Benefits of a Metalloid

    No full text
    Silicon is the second most abundant element in nature behind oxygen. As a metalloid, silicon has been used in many industrial applications including use as an additive in the food and beverage industry. As a result, humans come into contact with silicon through both environmental exposures but also as a dietary component. Moreover, many forms of silicon, that is, Si bound to oxygen, are water-soluble, absorbable, and potentially bioavailable to humans presumably with biological activity. However, the specific biochemical or physiological functions of silicon, if any, are largely unknown although generally thought to exist. As a result, there is growing interest in the potential therapeutic effects of water-soluble silica on human health. For example, silicon has been suggested to exhibit roles in the structural integrity of nails, hair, and skin, overall collagen synthesis, bone mineralization, and bone health and reduced metal accumulation in Alzheimer\u27s disease, immune system health, and reduction of the risk for atherosclerosis. Although emerging research is promising, much additional, corroborative research is needed particularly regarding speciation of health-promoting forms of silicon and its relative bioavailability. Orthosilicic acid is the major form of bioavailable silicon whereas thin fibrous crystalline asbestos is a health hazard promoting asbestosis and significant impairment of lung function and increased cancer risk. It has been proposed that relatively insoluble forms of silica can also release small but meaningful quantities of silicon into biological compartments. For example, colloidal silicic acid, silica gel, and zeolites, although relatively insoluble in water, can increase concentrations of water-soluble silica and are thought to rely on specific structural physicochemical characteristics. Collectively, the food supply contributes enough silicon in the forms aforementioned that could be absorbed and significantly improve overall human health despite the negative perception of silica as a health hazard. This review discusses the possible biological potential of the metalloid silicon as bioavailable orthosilicic acid and the potential beneficial effects on human health. © Springer Science+Business Media Dordrecht 2013

    Systemic and Local Regulators of Bone Remodeling

    No full text
    corecore