9,150 research outputs found
Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction
We study the Li isotopes systematically in terms of the tensor-optimized
shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8'
interaction. The short-range correlation is treated in the unitary correlation
operator method (UCOM). Using the TOSM+UCOM approach, we investigate the role
of the tensor force on each spectrum of the Li isotopes. It is found that the
tensor force produces quite a characteristic effect on various states in each
spectrum and those spectra are affected considerably by the tensor force. The
energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of
the last neutron, in 5Li is caused by opposite roles of the tensor correlation.
In 6Li, the spin-triplet state in the LS coupling configuration is favored
energetically by the tensor force in comparison with jj coupling shell model
states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2
orbit are favored energetically due to the large tensor contribution to allow
the excitation from the 0s orbit to the p1/2 orbit by the tensor force. Those
three nuclei show the jj coupling character in their ground states which is
different from 6Li.Comment: 12 pages, 6 figures. arXiv admin note: text overlap with
arXiv:1108.393
Heterogeneity Induced Order in Globally Coupled Chaotic Systems
Collective behavior is studied in globally coupled maps with distributed
nonlinearity. It is shown that the heterogeneity enhances regularity in the
collective dynamics. Low-dimensional quasiperiodic motion is often found for
the mean-field, even if each element shows chaotic dynamics. The mechanism of
this order is due to the formation of an internal bifurcation structure, and
the self-consistent dynamics between the structures and the mean-field.
Keywords: Globally Coupled Map with heterogeneity, Collective behaviorComment: 11 pages (Revtex) + 4 figures (PostScript,tar+gzip
Universal Irreversibility of Normal Quantum Diffusion
Time-reversibility measured by the deviation of the perturbed time-reversed
motion from the unperturbed one is examined for normal quantum diffusion
exhibited by four classes of quantum maps with contrastive physical nature.
Irrespective of the systems, there exist a universal minimal quantum threshold
above which the system completely loses the past memory, and the time-reversed
dynamics as well as the time-reversal characteristics asymptotically trace
universal curves independent of the details of the systems.Comment: 4 pages, 4 figure
Josephson Vortex States in Intermediate Fields
Motivated by recent resistance data in high superconductors in fields
{\it parallel} to the CuO layers, we address two issues on the Josephson-vortex
phase diagram, the appearances of structural transitions on the observed first
order transition (FOT) curve in intermediate fields and of a lower critical
point of the FOT line. It is found that some rotated pinned solids are more
stable than the ordinary rhombic pinned solids with vacant interlayer spacings
and that, due to the vertical portion in higher fields of the FOT line, the FOT
tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February,
2002
Algebroid Yang-Mills Theories
A framework for constructing new kinds of gauge theories is suggested.
Essentially it consists in replacing Lie algebras by Lie or Courant algebroids.
Besides presenting novel topological theories defined in arbitrary spacetime
dimensions, we show that equipping Lie algebroids E with a fiber metric having
sufficiently many E-Killing vectors leads to an astonishingly mild deformation
of ordinary Yang-Mills theories: Additional fields turn out to carry no
propagating modes. Instead they serve as moduli parameters gluing together in
part different Yang-Mills theories. This leads to a symmetry enhancement at
critical points of these fields, as is also typical for String effective field
theories.Comment: 4 pages; v3: Minor rewording of v1, version to appear in Phys. Rev.
Let
Orbital selectivity of the kink in the dispersion of Sr2RuO4
We present detailed energy dispersions near the Fermi level on the monolayer
perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved
photoemission spectroscopy. An orbital selectivity of the kink in the
dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is
clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides
insight into the origin of the kink.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.
Uniaxial-Pressure induced Ferromagnetism of Enhanced Paramagnetic Sr3Ru2O7
We report a uniaxial pressure-dependence of magnetism in layered perovskite
strontium ruthenate Sr3Ru2O7. By applying a relatively small uniaxial pressure,
greater than 0.1 GPa normal to the RuO2 layer, ferromagnetic ordering manifests
below 80 K from the enhanced-paramagnet. Magnetization at 1 kOe and 2 K becomes
100 times larger than that under ambient condition. Uniaxial pressure
dependence of Curie temperature T_C suggests the first order magnetic
transition. Origin of this uniaxial-pressure induced ferromagnetism is
discussed in terms of the rotation of RuO6 octahedra within the RuO2 plane.Comment: 8 pages, 3 figures. to be published in Journal of the Physical
Society of Japan, vol.73, No.5 (2004
Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5
We investigated effects of magnetic field H on antiferromagnetic (AF)
structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering
measurements. By applying H along the [1,-1,0] direction, the incommensurate AF
state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is
replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4)
modulation above 2 T for x=0.23, while the AF states with the
q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change
into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the
different types of AF correlation for Co concentrations of 0.23 and 0.7 in an
applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009
(Karlsruhe, Germany
Ab-initio calculations of the optical properties of the Si(113)3x2ADI surface
We investigated the stable silicon (113) surface with a 3x2ADI reconstruction
by ab-initio methods. The ground state properties have been obtained using the
density-functional theory. We present the dispersion of the electronic band
structure, where the surface bands have been distinguished from the projected
bulk bands by calculating their localization in the slab. The optical spectra,
here the reflectance anisotropy (RAS), have been obtained within the
independent particle random phase approximation. We identified surface features
in the spectra tracing them back to the responsible electronic states and,
studied their localization in the slab. A comparison with available
experimental data for the band structure and the RAS shows a good agreement.Comment: 10 pages, 10 figure
- …