3 research outputs found
Analysis of the archetypal functional equation in the non-critical case
We study the archetypal functional equation of the form (), where is a probability measure on ; equivalently, , where is expectation with respect to the distribution of random coefficients . Existence of non-trivial (i.e. non-constant) bounded continuous solutions is governed by the value ; namely, under mild technical conditions no such solutions exist whenever (and ) then there is a non-trivial solution constructed as the distribution function of a certain random series representing a self-similar measure associated with . Further results are obtained in the supercritical case , including existence, uniqueness and a maximum principle. The case with is drastically different from that with ; in particular, we prove that a bounded solution possessing limits at must be constant. The proofs employ martingale techniques applied to the martingale , where is an associated Markov chain with jumps of the form