2,119 research outputs found

    Descent Relations in Cubic Superstring Field Theory

    Full text link
    The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations and in the NS fermionic string field theory in the kappa and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.Comment: Replaced to JHEP styl

    QCD one-loop correction to Higgs boson decay into quarkonium-pair

    Full text link
    Rare decays of the Higgs boson into quarkonia-pairs are studied within the framework of NRQCD approach. The main decay mechanisms and their interference are studied in detail. One-loop corrections to the widths of these decays are taken into account for the first time.Comment: Minor changes for the text. Has been accepted by Phys. Rev.

    String Field Theory Projectors for Fermions of Integral Weight

    Full text link
    The interaction vertex for a fermionic first order system of weights (1,0) such as the twisted bc-system, the fermionic part of N=2 string field theory and the auxiliary \eta\xi system of N=1 strings is formulated in the Moyal basis. In this basis, the Neumann matrices are diagonal; as usual, the eigenvectors are labeled by \kappa\in\R. Oscillators constructed from these eigenvectors make up two Clifford algebras for each nonzero value of \kappa. Using a generalization of the Moyal-Weyl map to the fermionic case, we classify all projectors of the star-algebra which factorize into projectors for each \kappa-subspace. At least for the case of squeezed states we recover the full set of bosonic projectors with this property. Among the subclass of ghost number-homogeneous squeezed state projectors, we find a single class of BPZ-real states parametrized by one (nearly) arbitrary function of \kappa. This class is shown to contain the generalized butterfly states. Furthermore, we elaborate on sufficient and necessary conditions which have to be fulfilled by our projectors in order to constitute surface states. As a byproduct we find that the full star product of N=2 string field theory translates into a canonically normalized continuous tensor product of Moyal-Weyl products up to an overall normalization. The divergent factors arising from the translation to the continuous basis cancel between bosons and fermions in any even dimension.Comment: LaTeX, 1+23 pages, minor improvements, references adde

    About low field memory and negative magnetization in semiconductors and polymers

    Full text link
    Ginzburg-Landau bulk magnetization of itinerant electrons can provide a negative effective field in the Weiss model by coupling to localized magnetic moments. The coupling enforces remnant magnetization, which can be negative or positive depending on the sample magnetic history. Stable magnetic susceptibility of coupled nonequilibrium subsystems with magnetization reversal is always positive. Gauss-scale fields could be expected for switching between negative and positive remnant moments in semiconductors with coupling at ambient temperatures. Negative magnetization in ultra-high conducting polymers is also discussed within the developed framework.Comment: 8 pages, no figure
    corecore