2,285 research outputs found

    Autonomy and Singularity in Dynamic Fracture

    Full text link
    The recently developed weakly nonlinear theory of dynamic fracture predicts 1/r1/r corrections to the standard asymptotic linear elastic 1/r1/\sqrt{r} displacement-gradients, where rr is measured from the tip of a tensile crack. We show that the 1/r1/r singularity does not automatically conform with the notion of autonomy (autonomy means that any crack tip nonlinear solution is uniquely determined by the surrounding linear elastic 1/r1/\sqrt{r} fields) and that it does not automatically satisfy the resultant Newton's equation in the crack parallel direction. We show that these two properties are interrelated and that by requiring that the resultant Newton's equation is satisfied, autonomy of the 1/r1/r singular solution is retained. We further show that the resultant linear momentum carried by the 1/r1/r singular fields vanishes identically. Our results, which reveal the physical and mathematical nature of the new solution, are in favorable agreement with recent near tip measurements.Comment: 4 pages, 2 figures, related papers: arXiv:0902.2121 and arXiv:0807.486

    On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons

    Get PDF
    Fiber dispersion in collagenous soft tissues has an important influence on the mechanical response, and the modeling of the collagen fiber architecture and its mechanics has developed significantly over the last few years. The purpose of this paper is twofold, first to develop a method for excluding compressed fibers within a dispersion for the generalized structure tensor (GST) model, which several times in the literature has been claimed not to be possible, and second to draw attention to several erroneous and misleading statements in the literature concerning the relative values of the GST and the angular integration (AI) models. For the GST model we develop a rather simple method involving a deformation dependent dispersion parameter that allows the mechanical influence of compressed fibers within a dispersion to be excluded. The theory is illustrated by application to simple extension and simple shear in order to highlight the effect of exclusion. By means of two examples we also show that the GST and the AI models have equivalent predictive power, contrary to some claims in the literature. We conclude that from the theoretical point of view neither of these two models is superior to the other. However, as is well known and as we now emphasize, the GST model has proved to be very successful in modeling the data from experiments on a wide range of tissues, and it is easier to analyze and simpler to implement than the AI approach, and the related computational effort is much lower

    Doping and critical-temperature dependence of the energy gaps in Ba(Fe_{1-x}Co_x)_2As_2 thin films

    Get PDF
    The dependence of the superconducting gaps in epitaxial Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 \leq x \leq 0.15) was studied by means of point-contact Andreev-reflection spectroscopy. The normalized conductance curves were well fitted by using the 2D Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although the possible presence of gap anisotropies cannot be completely excluded. The amplitudes of the two gaps \Delta_{S} and \Delta_{L} show similar monotonic trends as a function of the local critical temperature T_{c}^{A} (measured in the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x is well correlated to the trend of the critical temperature, i.e. to the shape of the superconducting region in the phase diagram. When analyzed within a simple three-band Eliashberg model, this trend turns out to be compatible with a mechanism of superconducting coupling mediated by spin fluctuations, whose characteristic energy scales with T_{c} according to the empirical law \Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength \lambda_{tot}= 2.22 for x \leq 0.10 (i.e. up to optimal doping) that slightly decreases to \lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).Comment: 8 pages, 5 color figure

    Resistivity in Co-doped Ba-122: comparison of thin films and single crystals

    Full text link
    The temperature dependence of the resistivity of epitaxial Ba(Fe_(1-x)Co_x)2As2 thin films (with nominal doping x = 0.08, 0.10 and 0.15) has been analyzed and compared with analogous measurements on single crystals taken from literature. The rho(T) of thin films looks different from that of single crystals, even when the cobalt content is the same. All rho(T) curves can be fitted by considering an effective two-band model (with holes and electrons bands) in which the electrons are more strongly coupled with the bosons (spin fluctuations) than holes, while the effect of impurities is mainly concentrated in the hole band. Within this model the mediating boson has the same characteristic energy in single crystals and thin films, but the shape of the transport spectral function at low energy has to be very different, leading to a "hardening" of the electron-boson spectral function in thin films, associated with the strain induced by the substrate.Comment: 13 pages, 4 figure

    The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films

    Full text link
    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45{\deg} in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for publication in Advances in Cryogenic Engineering (Materials
    • …
    corecore