202 research outputs found

    How Ubiquitin Unfolds after Transfer into the Gas Phase

    Get PDF
    The structural evolution of ubiquitin after transfer into the gas phase was studied by electron capture dissociation. Site-specific fragment yields show that ubiquitin’s solution fold is overall unstable in the gas phase, but unfolding caused by loss of solvent is slowest in regions stabilized by salt bridges

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Single Nucleotide Polymorphism Typing of Bacillus anthracis from Sverdlovsk Tissue

    Get PDF
    A small number of conserved canonical single nucleotide polymorphisms (canSNP) that define major phylogenetic branches for Bacillus anthracis were used to place a Sverdlovsk patient’s B. anthracis genotype into 1 of 12 subgroups. Reconstruction of the pagA gene also showed a unique SNP that defines a new lineage for B. anthracis

    Rapid and High-Throughput pan-Orthopoxvirus Detection and Identification using PCR and Mass Spectrometry

    Get PDF
    The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit

    Genomic Signature-Based Identification of Influenza A Viruses Using RT-PCR/Electro-Spray Ionization Mass Spectrometry (ESI-MS) Technology

    Get PDF
    BACKGROUND: The emergence and rapid spread of the 2009 H1N1 pandemic influenza A virus (H1N1pdm) in humans highlights the importance of enhancing the capability of existing influenza surveillance systems with tools for rapid identification of emerging and re-emerging viruses. One of the new approaches is the RT-PCR electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology, which is based on analysis of base composition (BC) of RT-PCR amplicons from influenza "core" genes. Combination of the BC signatures represents a "genomic print" of an influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Here, 757 samples collected between 2006 and 2009 were tested, including 302 seasonal H1N1, 171 H3N2, 7 swine triple reassortants, and 277 H1N1pdm viruses. Of the 277 H1N1pdm samples, 209 were clinical specimens (throat, nasal and nasopharyngeal swabs, nasal washes, blood and sputum). BC signatures for the clinical specimen from one of the first cases of the 2009 pandemic, A/California/04/2009, confirmed it as an unusual, previously unrecognized influenza A virus, with "core" genes related to viruses of avian, human and swine origins. Subsequent analysis of additional 276 H1N1pdm samples revealed that they shared the genomic print of A/California/04/2009, which differed from those of North American swine triple reassortant viruses, seasonal H1N1 and H3N2 and other viruses tested. Moreover, this assay allowed distinction between "core" genes of co-circulating groups of seasonal H1N1, such as clades 2B, 2C, and their reassortants with dual antiviral resistance to adamantanes and oseltamivir. CONCLUSIONS/SIGNIFICANCE: The RT-PCR/ESI-MS assay is a broad range influenza identification tool that can be used directly on clinical specimens for rapid and accurate detection of influenza virus genes. The assay differentiates the H1N1pdm from seasonal and other nonhuman hosts viruses. Although not a diagnostic tool, this assay demonstrates its usefulness and robustness in influenza virus surveillance and detection of novel and unusual viruses with previously unseen genomic prints

    Interaction-Dependent PCR: Identification of Ligand−Target Pairs from Libraries of Ligands and Libraries of Targets in a Single Solution-Phase Experiment

    Get PDF
    Interaction-dependent PCR (IDPCR) is a solution-phase method to identify binding partners from combined libraries of small-molecule ligands and targets in a single experiment. Binding between DNA-linked targets and DNA-linked ligands induces formation of an extendable duplex. Extension links codes that identify the ligand and target into one selectively amplifiable DNA molecule. In a model selection, IDPCR resulted in the enrichment of DNA encoding all five known protein−ligand pairs out of 67 599 possible sequences.Chemistry and Chemical Biolog
    corecore