1,231 research outputs found
Constituent quark model for baryons with strong quark-pair correlations and non-leptonic weak transitions of hyperon
We study the roles of quark-pair correlations for baryon properties, in
particular on non-leptonic weak decay of hyperons. We construct the quark wave
function of baryons by solving the three body problem explicitly with
confinement force and the short range attraction for a pair of quarks with
their total spin being 0. We show that the existence of the strong quark-quark
correlations enhances the non-leptonic transition amplitudes which is
consistent with the data, while the baryon masses and radii are kept to the
experiment.Comment: 4 pages, 2 figures, talk presented at KEK-Tanashi International
Symposium on Physics of Hadrons and Nuclei, Tokyo, Japan, 14-17 Dec. 199
Role of quark-quark correlation in baryon structure and non-leptonic weak transitions of hyperons
We study the role of quark-quark correlation in the baryon structure and, in
particular, the hyperon non-leptonic weak decay, which is sensitive to the
correlation between quarks in the spin-0 channel. We rigorously solve
non-relativistic three-body problem for SU(3) ground state baryons to take into
account the quark-pair correlation explicitly. With the suitable attraction in
the spin-0 channel, resulting static baryon properties as well as the parity
conserving weak decay amplitudes agree with the experimental values. Special
emphasis is placed also on the effect of the SU(6) spin-flavor symmetry
breaking on the baryon structure. Although the SU(6) breaking effects on the
local behavior of the quark wave functions are considerable due to the spin-0
attraction, the calculated magnetic moments are almost the same as the naive
SU(6) expectations
Towards pp -> VVjj at NLO QCD: Bosonic contributions to triple vector boson production plus jet
In this work, some of the NLO QCD corrections for pp -> VVjj + X are
presented. A program in Mathematica based on the structure of FeynCalc which
automatically simplifies a set of amplitudes up to the hexagon level of rank 5
has been created for this purpose. We focus on two different topologies. The
first involves all the virtual contributions needed for quadruple electroweak
vector boson production, i.e. pp -> VVVV + X. In the second, the remaining
"bosonic" corrections to electroweak triple vector boson production with an
additional jet (pp -> VVV j + X) are computed. We show the factorization
formula of the infrared divergences of the bosonic contributions for VVVV and
VVVj production with V=(W,Z,gamma). Stability issues associated with the
evaluation of the hexagons up to rank 5 are studied. The CPU time of the
FORTRAN subroutines rounds the 2 milliseconds and seems to be competitive with
other more sophisticated methods. Additionally, in Appendix A the master
equations to obtain the tensor coefficients up to the hexagon level in the
external momenta convention are presented including the ones needed for small
Gram determinants.Comment: 48 pages,16 figure
Multi-cluster dynamics in and analogy to clustering in
We investigate structure of and discuss the difference
and similarity between the structures of and by answering the questions if the linear-chain and gaslike cluster states,
which are proposed to appear in , survives, or new structure
states appear or not. We introduce a microscopic cluster model called,
Hyper-Tohsaki-Horiuchi-Schuck-R\"opke (H-THSR) wave function, which is an
extended version of the THSR wave function so as to describe
hypernuclei. We obtained two bound states and two resonance (quasi-bound)
states for in , corresponding to the four
states in . However, the inversion of level ordering
between the spectra of and , i.e. that the
and states in correspond to the
and states in , respectively, is shown to occur. The
additional particle reduces sizes of the and states
in very much, but the shrinkage of the state is
only a half of the other states. In conclusion, the Hoyle state becomes quite a
compact object with configuration in
and is no more gaslike state composed of the
clusters. Instead, the state in , coming from the
state, appears as a gaslike state composed of
configuration, i.e. the Hoyle analog
state. A linear-chain state in a hypernucleus is for the first time
predicted to exist as the state in with more
shrunk arrangement of the clusters along -axis than the
linear-chain configuration realized in the state.Comment: 9 pages, 6 figures, figures rearranged, accepted for publication in
PL
Continuum-discretized coupled-channels method for four-body nuclear breakup in He+C scattering
We propose a fully quantum-mechanical method of treating four-body nuclear
breakup processes in scattering of a projectile consisting of three
constituents, by extending the continuum-discretized coupled-channels method.
The three-body continuum states of the projectile are discretized by
diagonalizing the internal
Hamiltonian of the projectile with the Gaussian basis functions. For
He+C scattering at 18 and 229.8 MeV, the validity of the method is
tested by convergence of the elastic and breakup cross sections with respect to
increasing the number of the basis functions. Effects of the four-body breakup
and the Borromean structure of He on the elastic and total reaction cross
sections are discussed.Comment: 5 pages, 6 figures, uses REVTeX 4, submitted to Phys. Rev.
Continuum-discretized coupled-channels method for four-body breakup reactions
Development of the method of CDCC (Continuum-Discretized Coupled-Channels)
from the level of three-body CDCC to that of four-body CDCC is reviewed.
Introduction of the pseudo-state method based on the Gaussian expansion method
for discretizing the continuum states of two-body and three-body projectiles
plays an essential role in the development. Furthermore, introduction of the
complex-range Gaussian basis functions is important to improve the CDCC for
nuclear breakup so as to accomplish that for Coulomb and nuclear breakup. A
successful application of the four-body CDCC to He+C scattering at
18 and 229.8 MeV is reported.Comment: Latex file of revtex4 class, 14 pages, 10 figures. A talk given at
the Workshop on Reaction Mechanisms for Rare Isotope Beams, Michigan State
University, March 9-12, 2005 (to appear in an AIP Conference Proceedings
New treatment of breakup continuum in the method of continuum discretized coupled channels
A new method of pseudo-state discretization is proposed for the method of
continuum discretized coupled channels (CDCC) to deal with three-body breakup
processes. We propose real- and complex-range Gaussian bases for the
pseudo-state wave functions, and show that they form in good approximation a
complete set in the configuration space which is important for breakup
processes.
Continuous S-matrix elements are derived with the approximate completeness
from discrete ones calculated by CDCC.
Accuracy of the method is tested quantitatively for two realistic examples,
d+Ni scattering at 80 MeV and Li+Ca scattering at 156 MeV
with the satisfactory results. Possibility of application of the method to
four-body breakup processes is also discussed.Comment: 10 pages, 14 Postscript figures, uses REVTeX 4, submitted to Phys.
Rev.
Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells
Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments
- …