1,659 research outputs found

    Transport Properties of "Extended-s" State Superconductors

    Full text link
    Superconducting states with "extended s-wave" symmetry have been suggested in connection with recent ARPES experiments on BSCCO. In the presence of impurities, thermodynamic properties of such states reflect a residual density of states N(0)N(0) for a range of concentrations. While properties reflecting N(ω)N(\omega) alone will be similar to those of d-wave states, transport measurements may be shown to qualitatively distinguish between the two. In contrast to the d-wave case with unitarity limit scattering, limiting low-temperature residual conductivities in the s-wave state are large and scale inversely with impurity concentration.Comment: 4 pages, 5 figures, uuencoded compressed postscript fil

    Lower Bound for the Fermi Level Density of States of a Disordered D-Wave Superconductor in Two Dimensions

    Full text link
    We consider a disordered d--wave superconductor in two dimensions. Recently, we have shown in an exact calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian distribution, one can establish a nonzero lower bound for the Fermi level density of states. The fact that the tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained before is generic.Comment: 15 preprint pages, no figures, submitted to PR

    Scattering by impurity-induced order parameter ``holes'' in d-wave superconductors

    Full text link
    Nonmagnetic impurities in d-wave superconductors cause strong local suppressions of the order parameter. We investigate the observable effects of the scatterigng off such suppressions in bulk samples by treating the order parameter "hole" as a pointlike off-diagonal scatterer treated within a self-consistent t-matrix approximation. Strong scattering potentials lead to a finite-energy spectral feature in the d-wave "impurity band", the observable effects of which include enhanced low-temperature microwave power absorption and a stronger sensitivity of the London penetration depth to disorder than found previously in simpler ``dirty'' d-wave models.Comment: 5 pp. Revtex including 4 postscript figures, submitted to Phys. Rev.

    Mermin's Pentagram as an Ovoid of PG(3,2)

    Full text link
    Mermin's pentagram, a specific set of ten three-qubit observables arranged in quadruples of pairwise commuting ones into five edges of a pentagram and used to provide a very simple proof of the Kochen-Specker theorem, is shown to be isomorphic to an ovoid (elliptic quadric) of the three-dimensional projective space of order two, PG(3,2). This demonstration employs properties of the real three-qubit Pauli group embodied in the geometry of the symplectic polar space W(5,2) and rests on the facts that: 1) the four observables/operators on any of the five edges of the pentagram can be viewed as points of an affine plane of order two, 2) all the ten observables lie on a hyperbolic quadric of the five-dimensional projective space of order two, PG(5,2), and 3) that the points of this quadric are in a well-known bijective correspondence with the lines of PG(3,2).Comment: 5 pages, 4 figure

    Role of the impurity-potential range in disordered d-wave superconductors

    Full text link
    We analyze how the range of disorder affects the localization properties of quasiparticles in a two-dimensional d-wave superconductor within the standard non-linear sigma-model approach to disordered systems. We show that for purely long-range disorder, which only induces intra-node scattering processes, the approach is free from the ambiguities which often beset the disordered Dirac-fermion theories, and gives rise to a Wess-Zumino-Novikov-Witten action leading to vanishing density of states and finite conductivities. We also study the crossover induced by internode scattering due to a short range component of the disorder, thus providing a coherent non-linear sigma-model description in agreement with all the various findings of different approaches.Comment: 38 pages, 1 figur

    Anisotropic Optical Conductivity of Nd2-xCexCuO4 Thin Films

    Full text link
    Opticcal conductivity spectra σ1(ω)\sigma_1(\omega) of Nd2-xCexCuO4 thin films, measured by the reflectance-transmittance method (R-T method) which has been proposed to investigate far-infrared spectroscopy, are investigated based on the anisotropic pairing model. Precise measurements of the frequency-dependent conductivity enable us to examine quantitatively the nature of the superconducting gap through infrared properties in the electron-doped high-Tc superconductors. We show that the behavior of optical conductivity σ1\sigma_1 is consistent with the anisotropic superconducting gap and is well explained by the formula for d-wave pairing in the low-energy regime of the far-infrared region. Our results suggest that the electron-doped cuprate superconductors Nd2-xCexCuO4 have nodes in the superconducting gap.Comment: 4 pages, 3 figure
    • …
    corecore