253 research outputs found
Stratosphere Observation Project Using a Small Balloon
Global warming continues to be a major concern around the world. The Integrated System Engineering Lab in Kyushu Institute of Technology (KIT) launched a small balloon to the stratosphere to study the ozone layer and greenhouse gases in order to understand global warming. It is a part of the Project Based Learning (PBL) course in KIT. The project mission objectives were to obtain photographs and video of the Earth surface and space and to perform measurement of the ozone gas (O3) and carbon dioxide gas (CO2) concentration in the atmosphere. The payload was launched into the stratosphere using a small balloon. After the balloon exploded at maximum altitude, the payload descended using a parachute before being recovered at sea. This project was divided into three (3) groups which were the structure, electrical and transmission team. Simulation of the flight path was performed to aid in recovering the payload. The project started from April 2016 and the balloon was successfully launched on October 30, 2016 from Saiki in the Oita prefecture of Kyushu, Japan. This paper will describe the procedure and result of this project
Calorimetric and transport investigations of CePd_{2+x}Ge_{2-x} (x=0 and 0.02) up to 22 GPa
The influence of pressure on the magnetically ordered CePd_{2.02}Ge_{1.98}
has been investigated by a combined measurement of electrical resistivity,
, and ac-calorimetry, C(T), for temperatures in the range 0.3 K<T<10 K
and pressures, p, up to 22 GPa. Simultaneously CePd_2Ge_2 has been examined by
down to 40 mK. In CePd_{2.02}Ge_{1.98} and CePd_2Ge_2 the magnetic
order is suppressed at a critical pressure p_c=11.0 GPa and p_c=13.8 GPa,
respectively. In the case of CePd_{2.02}Ge_{1.98} not only the temperature
coefficient of , A, indicates the loss of magnetic order but also the
ac-signal recorded at low temperature. The residual
resistivity is extremely pressure sensitive and passes through a maximum and
then a minimum in the vicinity of p_c. The (T,p) phase diagram and the
A(p)-dependence of both compounds can be qualitatively understood in terms of a
pressure-tuned competition between magnetic order and the Kondo effect
according to the Doniach picture. The temperature-volume (T,V) phase diagram of
CePd_2Ge_2 combined with that of CePd_2Si_2 shows that in stoichiometric
compounds mainly the change of interatomic distances influences the exchange
interaction. It will be argued that in contrast to this the much lower
p_c-value of CePd_{2.02}Ge_{1.98} is caused by an enhanced hybridization
between 4f and conduction electrons.Comment: 9 pages, 7 figure
Photochromism of diarylethene molecules and crystals
Photochromism is defined as a reversible transformation of a chemical species between two isomers upon photoirradiation. Although vast numbers of photochromic molecules have been so far reported, photochromic molecules which exhibit thermally irreversible photochromic reactivity are limited to a few examples. The thermal irreversibility is an indispensable property for the application of photochromic molecules to optical memories and switches. We have developed a new class of photochromic molecules named “diarylethenes”, which show the thermally irreversible photochromic reactivity. The well designed diarylethene derivatives provide outstanding photochromic performance: both isomers are thermally stable for more than 470,000 years, photoinduced coloration/decoloration can be repeated more than 105 cycles, the quantum yield of cyclization reaction is close to 1 (100%), and the response times of both coloration and decoloration are less than 10 ps. This review describes theoretical background of the photochromic reactions, color changes of the derivatives in solution as well as in the single crystalline phase, and application of the crystals to light-driven actuators
Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates
Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion
Liquid chromatography/mass spectrometry analysis of exhaled leukotriene B(4 )in asthmatic children
BACKGROUND: The role of leukotriene (LT) B(4), a potent inflammatory mediator, in atopic asthmatic and atopic nonasthmatic children is largely unknown. The lack of a gold standard technique for measuring LTB(4 )in exhaled breath condensate (EBC) has hampered its quantitative assessment in this biological fluid. We sought to measure LTB(4 )in EBC in atopic asthmatic children and atopic nonasthmatic children. Exhaled nitric oxide (NO) was measured as an independent marker of airway inflammation. METHODS: Fifteen healthy children, 20 atopic nonasthmatic children, 25 steroid-naïve atopic asthmatic children, and 22 atopic asthmatic children receiving inhaled corticosteroids were studied. The study design was of cross-sectional type. Exhaled LTB(4 )concentrations were measured using liquid chromatography/mass spectrometry-mass spectrometry (LC/MS/MS) with a triple quadrupole mass spectrometer. Exhaled NO was measured by chemiluminescence with a single breath on-line method. LTB(4 )values were expressed as the total amount (in pg) of eicosanoid expired in the 15-minute breath test. Kruskal-Wallis test was used to compare groups. RESULTS: Compared with healthy children [87.5 (82.5–102.5) pg, median and interquartile range], exhaled LTB(4 )was increased in steroid-naïve atopic asthmatic [255.1 (175.0–314.7) pg, p < 0.001], but not in atopic nonasthmatic children [96.5 (87.3–102.5) pg, p = 0.59)]. Asthmatic children who were receiving inhaled corticosteroids had lower concentrations of exhaled LTB(4 )than steroid-naïve asthmatics [125.0 (25.0–245.0) pg vs 255.1 (175.0–314.7) pg, p < 0.01, respectively]. Exhaled NO was higher in atopic nonasthmatic children [16.2 (13.5–22.4) ppb, p < 0.05] and, to a greater extent, in atopic steroid-naïve asthmatic children [37.0 (31.7–57.6) ppb, p < 0.001] than in healthy children [8.3 (6.1–9.9) ppb]. Compared with steroid-naïve asthmatic children, exhaled NO levels were reduced in asthmatic children who were receiving inhaled corticosteroids [15.9 (11.5–31.7) ppb, p < 0.01]. CONCLUSION: In contrast to exhaled NO concentrations, exhaled LTB(4 )values are selectively elevated in steroid-naïve atopic asthmatic children, but not in atopic nonasthmatic children. Although placebo control studies are warranted, inhaled corticosteroids seem to reduce exhaled LTB(4 )in asthmatic children. LC/MS/MS analysis of exhaled LTB(4 )might provide a non-invasive, sensitive, and quantitative method for airway inflammation assessment in asthmatic children
Recommended from our members
A Prospective Cohort Study to Assess Obstructive Respiratory Disease Phenotypes and Endotypes in Japan: The TRAIT Study Design.
Background: Asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO) are complex and heterogeneous diseases that share clinical characteristics (phenotypes) and molecular mechanisms (endotypes). Whilst physicians make clinical decisions on diagnostic groups, for some such as ACO there is no commonly accepted criteria. An alternative approach is to evaluate phenotypes and endotypes that are considered to respond well to a specific type of treatment ("treatable traits") rather than diagnostic labels. Purpose: The prospective, longitudinal, and observational TRAIT study will evaluate disease characteristics, including both phenotypes and endotypes, in relation to the presentation of obstructive respiratory disease characteristics in patients diagnosed with asthma, COPD, or ACO in Japan, with the aim of further understanding the clinical benefit of a treatable traits-based approach. Patients and Methods: A total of 1500 participants will be enrolled into three cohorts according to their treating physician's diagnosis of asthma, COPD, or ACO at screening. Part 1 of the study will involve cross-sectional phenotyping and endotyping at study enrollment. Part 2 of the study will evaluate the progression of clinical characteristics, biomarker profiles, and treatment over a 3-year follow-up period. The follow-up will involve three annual study visits and three telephone calls scheduled at 6-month intervals. A substudy involving 50 participants from the asthma cohort (in which the ratio will be approximately 1:1 including 25 participants with a smoking history of ≥10 pack-years and 25 participants with no smoking history), 100 participants from the ACO cohort, and 100 participants from the COPD cohort will evaluate disease phenotypes using inspiratory and expiratory computed tomography scans. Conclusion: TRAIT will describe clinical characteristics of patients with obstructive respiratory diseases to better understand potential differences and similarities between clinical diagnoses, which will support the improvement of personalized treatment strategies
Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices
<p>Abstract</p> <p>Background</p> <p>The collection of exhaled breath condensate (EBC) is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments.</p> <p>Methods</p> <p>EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB<sub>4</sub>, PGE<sub>2</sub>, 8-isoprostane and cys-LTs were determined.</p> <p>Results</p> <p>EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB<sub>4 </sub>and PGE<sub>2</sub>) or showed higher concentrations (8-isoprostane). However, NOx was detected only in EBC sampled by ECoScreen.</p> <p>Conclusion</p> <p>ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.</p
Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases
BACKGROUND: Primary small cell carcinoma (SCC) of the esophagus is a rare and aggressive tumor with poor prognosis. In this study, we report the clinicopathological characteristics of 21 cases of small cell carcinoma of the esophagus treated at the Cancer Center of Sun Yat-Sen University, with particular focus on the histologic and immunohistochemical findings. METHODS: Twenty-one patient records were reviewed including presenting symptoms, demographics, disease stage, treatment, and follow-up. Histologic features were observed and immunohistochemical detection of cytokeratin (CK), epithelial membrane antigen (EMA), neuron specific enolase (NSE), synaptophysin (Syn), chromogranin A (CgA), neuronal cell adhesion molecules (CD56), thyroid transcriptional factor-1 (TTF-1) and S100 protein (S100) was performed. RESULTS: The median age of patients in the study was 56 years, with a male-to-female ratio of 3.2:1. Histologically, there were 19 "homogenous" SCC esophageal samples and 2 samples comprised of SCC and well-differentiated squamous cell carcinoma. The percentages of SCC samples with positive immunoreactivity were Syn 95.2%, CD56 76.2%, TTF-1 71.4%, NSE 61.9%, CgA 61.9%, CK 57.1%, EMA 61.9%, and S100 19.0%, respectively. The median patient survival time was 18.3 months after diagnosis. The 2-year survival rate was 28.6%. CONCLUSION: Our study suggests that esophageal SCC has similar histology to SCC that arises in the lung compartment, and Chinese patients have a poor prognosis. Higher proportion of positive labeling of Syn, CD56, CgA, NSE, and TTF-1 in esophageal SCC implicate that they are valuably applied in differential diagnosis of the malignancy
Synthesis of tenascin and laminin beta2 chain in human bronchial epithelial cells is enhanced by cysteinyl leukotrienes via CysLT1 receptor
<p>Abstract</p> <p>Background</p> <p>Cysteinyl leukotrienes (CysLTs) are key mediators of asthma, but their role in the genesis of airway remodeling is insufficiently understood. Recent evidence suggests that increased expression of tenascin (Tn) and laminin (Ln) β2 chain is indicative of the remodeling activity in asthma, but represents also an example of deposition of extracellular matrix, which affects the airway wall compliance. We tested the hypothesis that CysLTs affect production of Tn and Ln β2 chain by human bronchial epithelial cells and elucidated, which of the CysLT receptors, CysLT<sub>1 </sub>or CysLT<sub>2</sub>, mediate this effect.</p> <p>Methods</p> <p>Cultured BEAS-2B human bronchial epithelial cells were stimulated with leukotriene D<sub>4 </sub>(LTD<sub>4</sub>) and E<sub>4 </sub>(LTE<sub>4</sub>) and evaluated by immunocytochemistry, Western blotting, flow cytometry, and RT-PCR. CysLT receptors were differentially blocked with use of montelukast or BAY u9773.</p> <p>Results</p> <p>LTD<sub>4 </sub>and LTE<sub>4 </sub>significantly augmented the expression of Tn, whereas LTD<sub>4</sub>, distinctly from LTE<sub>4</sub>, was able to increase also the Ln β2 chain. Although the expression of CysLT<sub>2 </sub>prevailed over that of CysLT<sub>1</sub>, the up-regulation of Tn and Ln β2 chain by CysLTs was completely blocked by the CysLT<sub>1</sub>-selective antagonist montelukast with no difference between montelukast and the dual antagonist BAY u9773 for the inhibitory capacity.</p> <p>Conclusion</p> <p>These findings suggest that the CysLT-induced up-regulation of Tn and Ln β2 chain, an important epithelium-linked aspect of airway remodeling, is mediated predominantly by the CysLT<sub>1 </sub>receptor. The results provide a novel aspect to support the use of CysLT<sub>1 </sub>receptor antagonists in the anti-remodeling treatment of asthma.</p
- …