4,367 research outputs found

    Adoption of dynamic simulation for an energy performance rating tool for Korean residential buildings : EDEM-SAMSUNG

    Get PDF
    Currently, there is a high emphasis on reducing the energy consumption and carbon emissions of buildings worldwide. Korea is facing an emerging issue of energy savings in buildings in perspective of new green economic policy. In this context, various policy measures including the energy efficiency ratings for buildings are being implemented for domestic and non-domestic buildings. In practice, design teams tend to prefer easy to use assessment tools to optimise energy performance and carbon ratings while they are concerned about calculation accuracy and the accurate representation of the dynamics involved associated with the characteristics of Korean residential buildings. This paper presents an assessment tool, named ‘EDEM-Samsung’ that aims to address these challenges for Korean residential apartments, which often encounter complex design issues. EDEM-Samsung is a tool that enables users to make rapid decisions identifying the effect of design parameter changes on energy and carbon ratings with an effective user interface and without compromising accuracy. This paper describes the architecture and functionalities of the tool, and the advantages offered to Korean designers

    Transient photovoltage in GaN as measured by atomic force microscope tip

    Get PDF
    We studied restoration of the band bending at the surface of undoped GaN layers after illumination with above-bandgap light. The photovoltage saturated with illumination at about 0.2–0.3 eV at room temperature, although the upward band bending for GaN in the dark is of the order of 1 eV. We attribute the photovoltage effect to charging of the surface states, the density of which is estimated at about 10^12 cm^−2. Restoration of the barrier after a light pulse is simulated by a phenomenological model whereby the acceptorlike surface states are emptied of electrons under illumination and filled back in dark due to thermionic transfer of free electrons from the bulk to the surface states over the near-surface barrier. Photoinduced desorption of oxygen also affects the value of the photovoltage if the illumination is prolonged

    Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    Full text link
    We study the interactions between stellar wind and the extended hydrogen-dominated upper atmospheres of planets and the resulting escape of planetary pick-up ions from the 5 "super-Earths" in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a Direct Simulation Monte Carlo Model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five "super-Earths" and in a more general sense also with the thermal escape rates of the neutral planetary hydrogen atoms. Our results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen corona is formed around the planet. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 "super-Earths" vary between approximately 6.4e30 1/s and 4.1e31 1/s depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of approximately 1.07e7 g/s and 6.8e7 g/s respectively, which is a few percent of the thermal escape rates.Comment: 8 pages, 3 figures, accepted to A&

    A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c

    Full text link
    There is growing observational and theoretical evidence suggesting that atmospheric escape is a key driver of planetary evolution. Commonly, planetary evolution models employ simple analytic formulae (e.g., energy limited escape) that are often inaccurate, and more detailed physical models of atmospheric loss usually only give snapshots of an atmosphere's structure and are difficult to use for evolutionary studies. To overcome this problem, we upgrade and employ an already existing upper atmosphere hydrodynamic code to produce a large grid of about 7000 models covering planets with masses 1 - 39 Earth mass with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled planets have equilibrium temperatures ranging between 300 and 2000 K. For each considered stellar mass, we account for three different values of the high-energy stellar flux (i.e., low, moderate, and high activity). For each computed model, we derive the atmospheric temperature, number density, bulk velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the considered species as a function of distance from the planetary center. From these quantities, we estimate the positions of the maximum dissociation and ionisation, the mass-loss rate, and the effective radius of the XUV absorption. We show that our results are in good agreement with previously published studies employing similar codes. We further present an interpolation routine capable to extract the modelling output parameters for any planet lying within the grid boundaries. We use the grid to identify the connection between the system parameters and the resulting atmospheric properties. We finally apply the grid and the interpolation routine to estimate atmospheric evolutionary tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure
    • …
    corecore