40 research outputs found
New results for virial coefficients of hard spheres in D dimensions
We present new results for the virial coefficients B_k with k <= 10 for hard
spheres in dimensions D=2,...,8.Comment: 10 pages, 5 figures, to appear in conference proceedings of STATPHYS
2004 in Pramana - Journal of Physic
Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions
We evaluate the virial coefficients B_k for k<=10 for hard spheres in
dimensions D=2,...,8. Virial coefficients with k even are found to be negative
when D>=5. This provides strong evidence that the leading singularity for the
virial series lies away from the positive real axis when D>=5. Further analysis
provides evidence that negative virial coefficients will be seen for some k>10
for D=4, and there is a distinct possibility that negative virial coefficients
will also eventually occur for D=3.Comment: 33 pages, 12 figure
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
FOSSIL MAIZE FROM THE VALLEY OF MEXICO
Volume: 16Start Page: 229End Page: 24
How interactions between animal movement and landscape processes modify local range dynamics and extinction risk
Forecasts of range dynamics now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be simulated using overly simple distance-based dispersal models with little consideration of how the individual behaviour of dispersing organisms interacts with landscape structure (functional connectivity). Here, we link an individual-based model to a niche-population model to test the implications of this omission. We apply this novel approach to a turtle species inhabiting wetlands which are patchily distributed across a tropical savannah, and whose persistence is threatened by two important synergistic drivers of global change: predation by invasive species and overexploitation. We show that projections of local range dynamics in this study system change substantially when functional connectivity is modelled explicitly. Accounting for functional connectivity in model simulations causes the estimate of extinction risk to increase, and predictions of range contraction to slow. We conclude that models of range dynamics that simulate functional connectivity can reduce an important source of bias in predictions of shifts in species distributions and abundances, especially for organisms whose dispersal behaviours are strongly affected by landscape structure.Damien A. Fordham, Kevin T. Shoemaker, Nathan H. Schumaker, H. Reşit Akçakaya, Nathan Clisby, Barry W. Broo