3,285 research outputs found

    Spatial-temporal correlations in the process to self-organized criticality

    Get PDF
    A new type of spatial-temporal correlation in the process approaching to the self-organized criticality is investigated for the two simple models for biological evolution. The change behaviors of the position with minimum barrier are shown to be quantitatively different in the two models. Different results of the correlation are given for the two models. We argue that the correlation can be used, together with the power-law distributions, as criteria for self-organized criticality.Comment: 3 pages in RevTeX, 3 eps figure

    Exact Results for the One-Dimensional Self-Organized Critical Forest-Fire Model

    Full text link
    We present the analytic solution of the self-organized critical (SOC) forest-fire model in one dimension proving SOC in systems without conservation laws by analytic means. Under the condition that the system is in the steady state and very close to the critical point, we calculate the probability that a string of nn neighboring sites is occupied by a given configuration of trees. The critical exponent describing the size distribution of forest clusters is exactly τ=2\tau = 2 and does not change under certain changes of the model rules. Computer simulations confirm the analytic results.Comment: 12 pages REVTEX, 2 figures upon request, dro/93/

    Noncommutative Vortex Solitons

    Full text link
    We consider the noncommutative Abelian-Higgs theory and investigate general static vortex configurations including recently found exact multi-vortex solutions. In particular, we prove that the self-dual BPS solutions cease to exist once the noncommutativity scale exceeds a critical value. We then study the fluctuation spectra about the static configuration and show that the exact non BPS solutions are unstable below the critical value. We have identified the tachyonic degrees as well as massless moduli degrees. We then discuss the physical meaning of the moduli degrees and construct exact time-dependent vortex configurations where each vortex moves independently. We finally give the moduli description of the vortices and show that the matrix nature of moduli coordinates naturally emerges.Comment: 22 pages, 1 figure, typos corrected, a comment on the soliton size is adde

    Different hierarchy of avalanches observed in the Bak-Sneppen evolution model

    Get PDF
    We introduce a new quantity, average fitness, into the Bak-Sneppen evolution model. Through the new quantity, a different hierarchy of avalanches is observed. The gap equation, in terms of the average fitness, is presented to describe the self-organization of the model. It is found that the critical value of the average fitness can be exactly obtained. Based on the simulations, two critical exponents, avalanche distribution and avalanche dimension, of the new avalanches are given.Comment: 5 pages, 3 figure

    d_c=4 is the upper critical dimension for the Bak-Sneppen model

    Full text link
    Numerical results are presented indicating d_c=4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746-5749 (1998)] that placed d_c as high as d=8. In particular, we find that avalanches are compact for all dimensions d<=4, and are fractal for d>4. Under those conditions, scaling arguments predict a d_c=4, where hyperscaling relations hold for d<=4. Other properties of avalanches, studied for 1<=d<=6, corroborate this result. To this end, an improved numerical algorithm is presented that is based on the equivalent branching process.Comment: 4 pages, RevTex4, as to appear in Phys. Rev. Lett., related papers available at http://userwww.service.emory.edu/~sboettc

    Avalanche Merging and Continuous Flow in a Sandpile Model

    Full text link
    A dynamical transition separating intermittent and continuous flow is observed in a sandpile model, with scaling functions relating the transport behaviors between both regimes. The width of the active zone diverges with system size in the avalanche regime but becomes very narrow for continuous flow. The change of the mean slope, Delta z, on increasing the driving rate, r, obeys Delta z ~ r^{1/theta}. It has nontrivial scaling behavior in the continuous flow phase with an exponent theta given, paradoxically, only in terms of exponents characterizing the avalanches theta = (1+z-D)/(3-D).Comment: Explanations added; relation to other model

    A Cellular Automaton Model for Diffusive and Dissipative Systems

    Get PDF
    We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site. Whenever the local energy content of a site reaches a fixed threshold Ec1E_{c1}, energy will be dissipated. Dissipation of energy propagates to the neighboring sites provided that the energy contents of those sites are greater than or equal to another fixed threshold Ec2(≀Ec1)E_{c2} (\leq E_{c1}). Under such dynamics, the system evolves into three different types of states depending on the values of Ec1E_{c1} and Ec2E_{c2} as reflected in their dissipation size distributions, namely: localized peaks, power laws, or exponential laws. This model is able to describe the behaviors of various physical systems including the statistics of burst sizes and burst rates in type-I X-ray bursters. Comparisons between our model and the famous forest-fire model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised. Accepted by Phys.Rev.

    Scale Dependent Dimension of Luminous Matter in the Universe

    Get PDF
    We present a geometrical model of the distribution of luminous matter in the universe, derived from a very simple reaction-diffusion model of turbulent phenomena. The apparent dimension of luminous matter, D(l)D(l), depends linearly on the logarithm of the scale ll under which the universe is viewed: D(l)∌3log⁥(l/l0)/log⁥(Ο/l0)D(l) \sim 3\log(l/l_0)/\log(\xi/l_0), where Ο\xi is a correlation length. Comparison with data from the SARS red-shift catalogue, and the LEDA database provides a good fit with a correlation length Ο∌300\xi \sim 300 Mpc. The geometrical interpretation is clear: At small distances, the universe is zero-dimensional and point-like. At distances of the order of 1 Mpc the dimension is unity, indicating a filamentary, string-like structure; when viewed at larger scales it gradually becomes 2-dimensional wall-like, and finally, at and beyond the correlation length, it becomes uniform.Comment: 6 pages, 2 figure
    • 

    corecore