17 research outputs found

    Condition based Ensemble Deep Learning and Machine Learning Classification Technique for Integrated Potential Fishing Zone Future Forecasting

    Get PDF
    Artificial Intelligence (AI) technologies have become a popular application in order to improve the sustainability of smart fisheries. Although the ultimate objective of AI applications is often described as sustainability, there is yet no proof as to how AI contributes to sustainable fisheries. The proper monitoring of the longitudinal delivery of different human impacts on activities such as fishing is a major concern today in aquatic conservation. The term "potential fishing zone" (PFZ) refers to an anticipated area of any given sea where a variety of fish may congregate for some time. The forecast is made based on factors including the sea surface temperature (SST) and the sea superficial chlorophyll attentiveness. Fishing advisories are a by-product of the identification procedure. Normalization and preliminary processing are applied to these unprocessed data. The gathered attributes, together with financial derivatives and geometric features, are then utilised to make projections about IPFZ's Technique are used to get the final determination (CECT). In this study, we offer a technique for identifying and mapping fishing activity. Experimentations are performed to validate the efficacy of the CECT method in comparison to machine learning (ML) and deep learning (DL) methods across a variety of measurable parameters. Results showed that CECT obtained 94% accuracy, while Convolutional neural network only managed 92% accuracy on 80% training data and 20% testing data

    Telefacturing Based Distributed Manufacturing Environment for Optimal Manufacturing Service by Enhancing the Interoperability in the Hubs

    Get PDF
    Recent happenings are surrounding the manufacturing sector leading to intense progress towards the development of effective distributed collaborative manufacturing environments. This evolving collaborative manufacturing not only focuses on digitalisation of this environment but also necessitates service-dependent manufacturing system that offers an uninterrupted approach to a number of diverse, complicated, dynamic manufacturing operations management systems at a common work place (hub). This research presents a novel telefacturing based distributed manufacturing environment for recommending the manufacturing services based on the user preferences. The first step in this direction is to deploy the most advanced tools and techniques, that is, Ontology-based Protege 5.0 software for transforming the huge stored knowledge/information into XML schema of Ontology Language (OWL) documents and Integration of Process Planning and Scheduling (IPPS) for multijobs in a collaborative manufacturing system. Thereafter, we also investigate the possibilities of allocation of skilled workers to the best feasible operations sequence. In this context, a mathematical model is formulated for the considered objectives, that is, minimization of makespan and total training cost of the workers. With an evolutionary algorithm and developed heuristic algorithm, the performance of the proposed manufacturing system has been improved. Finally, to manifest the capability of the proposed approach, an illustrative example from the real-time manufacturing industry is validated for optimal service recommendation.This work has been supported by by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Tom and Jerry Based Multipath Routing with Optimal K-medoids for choosing Best Clusterhead in MANET

    Get PDF
    Given the unpredictable nature of a MANET, routing has emerged as a major challenge in recent years. For effective routing in a MANET, it is necessary to establish both the route discovery and the best route selection from among many routes. The primary focus of this investigation is on finding the best path for data transmission in MANETs. In this research, we provide an efficient routing technique for minimising the time spent passing data between routers. Here, we employ a routing strategy based on Tom and Jerry Optimization (TJO) to find the best path via the MANET's routers, called Ad Hoc On-Demand Distance Vector (AODV). The AODV-TJO acronym stands for the suggested approach. This routing technique takes into account not just one but three goal functions: total number of hops. When a node or connection fails in a network, rerouting must be done. In order to prevent packet loss, the MANET employs this rerouting technique. Analyses of AODV-efficacy TJO's are conducted, and results are presented in terms of energy use, end-to-end latency, and bandwidth, as well as the proportion of living and dead nodes. Vortex Search Algorithm (VSO) and cuckoo search are compared to the AODV-TJO approach in terms of performance. Based on the findings, the AODV-TJO approach uses 580 J less energy than the Cuckoo search algorithm when used with 500 nodes

    Prediction of Alzheimer Disease using LeNet-CNN model with Optimal Adaptive Bilateral Filtering

    Get PDF
    Alzheimer's disease is a kind of degenerative dementia that causes progressively worsening memory loss and other cognitive and physical impairments over time. Mini-Mental State Examinations and other screening tools are helpful for early detection, but diagnostic MRI brain analysis is required. When Alzheimer's disease (AD) is detected in its earliest stages, patients may begin protective treatments before permanent brain damage has occurred. The characteristics of the lesion sites in AD affected role, as identified by MRI, exhibit great variety and are dispersed across the image space, as demonstrated in cross-sectional imaging investigations of the disease. Optimized Adaptive Bilateral filtering using a deep learning model was suggested as part of this study's approach toward this end. Denoising the pictures with the help of the suggested adaptive bilateral filter is the first stage (ABF). The ABF improves denoising in edge, detail, and homogenous areas separately. After then, the ABF is given a weight, and the Adaptive Equilibrium Optimizer is used to determine the best possible value for that weight (AEO). LeNet, a CNN model, is then used to complete the AD organization. The first step in using the LeNet-5 network model to identify AD is to study the model's structure and parameters. The ADNI experimental dataset was used to verify the suggested technique and compare it to other models. The experimental findings prove that the suggested method can achieve a classification accuracy of 97.43%, 98.09% specificity, 97.12% sensitivity, and 89.67% Kappa index. When compared against competing algorithms, the suggested model emerges victorious

    Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection

    Get PDF
    Credit card fraud (CCF) has long been a major concern of institutions of financial groups and business partners, and it is also a global interest to researchers due to its growing popularity. In order to predict and detect the CCF, machine learning (ML) has proven to be one of the most promising techniques. But, class inequality is one of the main and recurring challenges when dealing with CCF tasks that hinder model performance. To overcome this challenges, a Deep Learning (DL) techniques are used by the researchers. In this research work, an efficient CCF detection (CCFD) system is developed by proposing a hybrid model called Convolutional Neural Network with Recurrent Neural Network (CNN-RNN). In this model, CNN acts as feature extraction for extracting the valuable information of CCF data and long-term dependency features are studied by RNN model. An imbalance problem is solved by Synthetic Minority Over Sampling Technique (SMOTE) technique. An experiment is conducted on European Dataset to validate the performance of CNN-RNN model with existing CNN and RNN model in terms of major parameters. The results proved that CNN-RNN model achieved 95.83% of precision, where CNN achieved 93.63% of precision and RNN achieved 88.50% of precision

    (E)-1,3-Dimethyl-2,6-diphenylpiperidin-4-one O-(phenoxycarbonyl)oxime

    No full text
    The title piperidine derivative, C26H26N2O3, has an E conformation about the N=C bond. The piperidine ring has a chair conformation and its mean plane is almost perpendicular to the attached phenyl rings, making dihedral angles of 87.47 (9) and 87.34 (8)°. The planes of these two phenyl rings are inclined to one another by 60.38 (9)°. The plane of the terminal phenyl ring is tilted at an angle of 32.79 (9)° to the mean plane of the piperidine ring. The molecular conformation is stabilized by two intramolecular C—H...O contacts. There are no significant intermolecular interactions in the crystal

    (E)-3-Methyl-2,6-diphenylpiperidin-4-one O-(3-methylbenzoyl)oxime

    No full text
    In the title compound, C26H26N2O2, the piperidine ring exhibits a chair conformation. The phenyl rings are attached to the central heterocycle in an equatorial position. The dihedral angle between the planes of the phenyl rings is 57.58 (8)°. In the crystal, C—H...O interactions connect the molecules into zigzag chains along [001]

    Crystal structure of (E)-4-(acetoxyimino)-N-allyl-3-isopropyl-2,6-diphenylpiperidine-1-carbothioamide

    No full text
    The title compound, C26H31N3O2S, crystallizes with two molecules (A and B) in the asymmetric unit. In each case, the piperidine ring exists in a twist-boat conformation. The dihedral angle between the phenyl rings is 46.16 (12)° in molecule A and 44.95 (12)° in molecule B. In both molecules, the allyl side chain is disordered over two orientations in a 0.649 (9):0.351 (9) ratio for molecule A and 0.826 (10):0.174 (10) ratio for molecule B. In the crystal, neither molecule forms a hydrogen bond from its N—H group, presumably due to steric hindrance. A+A and B+B inversion dimers are formed, linked by pairs of weak C—H...O hydrogen bonds enclosing R22(22) ring motifs
    corecore