5,513 research outputs found

    Breaking of k_\perp-factorization for Single Jet Production off Nuclei

    Full text link
    The linear k_\perp-factorization is part and parcel of the pQCD description of high energy hard processes off free nucleons. In the case of heavy nuclear targets the very concept of nuclear parton density becomes ill-defined as exemplified by the recent derivation [2] of nonlinear nuclear k_\perp-factorization for forward dijet production in DIS off nuclei. Here we report a derivation of the related breaking of k_\perp-factorization for single-jet processes. We present a general formalism and apply it to several cases of practical interest: open charm and quark and gluon jet production in the central to beam fragmentation region of \gamma^*p,\gamma^*A, pp and pA collisions. We show how the pattern of k_\perp-factorization breaking and the nature and number of exchanged nuclear pomerons do change within the phase space of produced quark and gluon jets. As an application of the nonlinear k_\perp-factorization we discuss the Cronin effect. Our results are also applicable to the p_\perp-dependence of the Landau-Pomeranchuk-Migdal effect for, and nuclear quenching of, jets produced in the proton hemisphere of pA collisions.Comment: 55 pages, 9 eps figures, presentation shortened, a number of typos removed, to appear in Phys. Rev.

    Evolution of high-mass diffraction from the light quark valence component of the pomeron

    Get PDF
    We analyze the contribution from excitation of the (qqˉ)(ffˉ),(qqˉ)g1...gn(ffˉ)(q\bar q)(f\bar f),(q\bar q)g_1...g_n(f\bar f) Fock states of the photon to high mass diffraction in DIS. We show that the large Q2Q^2 behavior of this contribution can be described by the DLLA evolution from the non-perturbative ffˉf\bar f valence state of the pomeron. Although of higher order in pQCD, the new contribution to high-mass diffraction is comparable to that from the excitation of the qqˉgq\bar q g Fock state of the photon.Comment: 12 pages, 2 figures, the oublished version. The slight numerical errors corrected, all conclusions are retaine

    Energy Dependence of the Pomeron Spin-Flip

    Get PDF
    There is no theoretical reason to think that the spin-flip component of the Pomeron is zero. One can measure the spin-flip part using Coulomb-nuclear interference (CNI). Perturbative QCD calculations show that the spin-flip component is sensitive to the smallest quark separation in the proton, while the non-flip part probes the largest separation. According to HERA results on the proton structure function at very low x the energy dependence of the cross-section correlates with the size of the color dipole. Analysing the data from HERA we predict that the ratio of the spin-flip to non-flip amplitude grows with energy as r(s)(1/x)0.10.2r(s)\propto (1/x)^{0.1-0.2}, violating Regge factorisation of the Pomeron.Comment: A few comments and references are added. Based on invited talks at the International Workshop on Diffraction Physics, Rio de Janeiro, February 16-20, 1998, and at DIS'98, Brussels, April 4-8, 199

    Quenching of Leading Jets and Particles: the p_t Dependent Landau-Pomeranchuk-Migdal effect from Nonlinear k_t Factorization

    Full text link
    We report the first derivation of the Landau-Pomeranchuk-Migdal effect for leading jets at fixed values of the transverse momentum p_t in the beam fragmentation region of hadron-nucleus collisions from RHIC (Relativistic Heavy Ion Collider) to LHC (Large Hadron Collider). The major novelty of this work is a derivation of the missing virtual radiative pQCD correction to these processes - the real-emission radiative corrections are already available in the literature. We manifestly implement the unitarity relation, which in the simplest form requires that upon summing over the virtual and real-emission corrections the total number of scattered quarks must exactly equal unity. For the free-nucleon target, the leading jet spectrum is shown to satisfy the familiar linear Balitsky-Fadin-Kuraev-Lipatov leading log(1/x) (LL-1/x) evolution. For nuclear targets, the nonlinear k_t-factorization for the LL-1/x evolution of the leading jet sepctrum is shown to exactly match the equally nonlinear LL-1/x evolution of the collective nuclear glue - there emerges a unique linear k_t-factorization relation between the two nonlinear evolving nuclear observables. We argue that within the standard dilute uncorrelated nucleonic gas treatment of heavy nuclei, in the finite energy range from RHIC to LHC, the leading jet spectrum can be evolved in the LL-1/x Balitsky-Kovchegov approximation. We comment on the extension of these results to, and their possible reggeon field theory interpretation for, mid-rapidity jets at LHC.Comment: 36 pages, 8 eps figs, revised, discussion on reggeon interpretation and refs. adde

    Non-linear BFKL dynamics: color screening vs. gluon fusion

    Full text link
    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken xx is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is Rc0.20.3R_c\simeq 0.2-0.3 fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter Rc2/8B\sim R_c^2/8B, with the diffraction cone slope BB standing for the characteristic size of the interaction region. It should slowly 1/lnQ2\propto 1/\ln Q^2 decrease at large Q2Q^2. Smallness of the ratio Rc2/8BR_c^2/8B makes the non-linear effects rather weak even at lowest Bjorken xx available at HERA. We report the results of our studies of the non-linear BFKL equation which has been generalized to incorporate the running coupling and the screening radius RcR_c as the infrared regulator.Comment: 16 pages, 2 figures, version accepted for publication, references adde

    Jet quenching with running coupling including radiative and collisional energy losses

    Full text link
    We calculate the nuclear modification factor for RHIC and LHC conditions accounting for the radiative and collisional parton energy loss with the running coupling constant.We find that the RHIC data can be explained both in the scenario with the chemically equilibrium quark-gluon plasma and purely gluonic plasma with slightly different thermal suppression of the coupling constant. The role of the parton energy gain due to gluon absorption is also investigated. Our results show that the energy gain gives negligible effect.Comment: 11 pages, 3 figure

    Charged currents, color dipoles and xF_3 at small x

    Full text link
    We develop the light-cone color dipole description of highly asymmetric diffractive interactions of left-handed and right-handed electroweak bosons. We identify the origin and estimate the strength of the left-right asymmetry effect in terms of the light-cone wave functions. We report an evaluation of the small-x neutrino-nucleon DIS structure functions xF_3 and 2xF_1 and present comparison with experimental data.Comment: 11 pages, 3 figures, misprints correcte

    Anatomy of the differential gluon structure function of the proton from the experimental data on F_2p

    Get PDF
    The use of the differential gluon structure function of the proton F(x,Q2){\cal F}(x,Q^{2}) introduced by Fadin, Kuraev and Lipatov in 1975 is called upon in many applications of small-x QCD. We report here the first determination of F(x,Q2){\cal F}(x,Q^{2}) from the experimental data on the small-x proton structure function F2p(x,Q2)F_{2p}(x,Q^{2}). We give convenient parameterizations for F(x,Q2){\cal F}(x,Q^{2}) based partly on the available DGLAP evolution fits (GRV, CTEQ & MRS) to parton distribution functions and on realistic extrapolations into soft region. We discuss an impact of soft gluons on various observables. The x-dependence of the so-determined F(x,Q2){\cal F}(x,Q^{2}) varies strongly with Q^2 and does not exhibit simple Regge properties. None the less the hard-to-soft diffusion is found to give rise to a viable approximation of the proton structure function F_{2p}(x,Q^2) by the soft and hard Regge components with intercepts \Delta_{soft}=0 and \Delta_{hard}\sim 0.4.Comment: 37 pages, 25 figure

    Nonlinear k_\perp-factorization for Gluon-Gluon Dijets Produced off Nuclear Targets

    Full text link
    The origin of the breaking of conventional linear k_\perp-factorization for hard processes in a nuclear environment is by now well established. The realization of the nonlinear nuclear k_\perp-factorization which emerges instead was found to change from one jet observable to another. Here we report on an important technical progress, the evaluation of the four-gluon color dipole cross section operator. It describes the coupled seven-channel non-Abelian intranuclear evolution of the four-gluon color-singlet states. An exact diagonalization of this seven-channel problem is possible for large number of colors N_c and allows a formulation of nonlinear k_\perp-factorization for production of gluon-gluon dijets. The momentum spectra for dijets in all possible color representations are reported in the form of explicit quadratures in terms of the collective nuclear unintegrated glue. Our results fully corroborate the concept of universality classes.Comment: 53 pages, 9 figures, a few typos fixe
    corecore