5,513 research outputs found
Breaking of k_\perp-factorization for Single Jet Production off Nuclei
The linear k_\perp-factorization is part and parcel of the pQCD description
of high energy hard processes off free nucleons.
In the case of heavy nuclear targets the very concept of nuclear parton
density becomes ill-defined as exemplified by the recent derivation [2] of
nonlinear nuclear k_\perp-factorization for forward dijet production in DIS off
nuclei. Here we report a derivation of the related breaking of
k_\perp-factorization for single-jet processes. We present a general formalism
and apply it to several cases of practical interest: open charm and quark and
gluon jet production in the central to beam fragmentation region of
\gamma^*p,\gamma^*A, pp and pA collisions. We show how the pattern of
k_\perp-factorization breaking and the nature and number of exchanged nuclear
pomerons do change within the phase space of produced quark and gluon jets. As
an application of the nonlinear k_\perp-factorization we discuss the Cronin
effect. Our results are also applicable to the p_\perp-dependence of the
Landau-Pomeranchuk-Migdal effect for, and nuclear quenching of, jets produced
in the proton hemisphere of pA collisions.Comment: 55 pages, 9 eps figures, presentation shortened, a number of typos
removed, to appear in Phys. Rev.
Evolution of high-mass diffraction from the light quark valence component of the pomeron
We analyze the contribution from excitation of the Fock states of the photon to high mass diffraction in
DIS. We show that the large behavior of this contribution can be
described by the DLLA evolution from the non-perturbative valence
state of the pomeron. Although of higher order in pQCD, the new contribution to
high-mass diffraction is comparable to that from the excitation of the Fock state of the photon.Comment: 12 pages, 2 figures, the oublished version. The slight numerical
errors corrected, all conclusions are retaine
Energy Dependence of the Pomeron Spin-Flip
There is no theoretical reason to think that the spin-flip component of the
Pomeron is zero. One can measure the spin-flip part using Coulomb-nuclear
interference (CNI). Perturbative QCD calculations show that the spin-flip
component is sensitive to the smallest quark separation in the proton, while
the non-flip part probes the largest separation. According to HERA results on
the proton structure function at very low x the energy dependence of the
cross-section correlates with the size of the color dipole. Analysing the data
from HERA we predict that the ratio of the spin-flip to non-flip amplitude
grows with energy as , violating Regge
factorisation of the Pomeron.Comment: A few comments and references are added. Based on invited talks at
the International Workshop on Diffraction Physics, Rio de Janeiro, February
16-20, 1998, and at DIS'98, Brussels, April 4-8, 199
Quenching of Leading Jets and Particles: the p_t Dependent Landau-Pomeranchuk-Migdal effect from Nonlinear k_t Factorization
We report the first derivation of the Landau-Pomeranchuk-Migdal effect for
leading jets at fixed values of the transverse momentum p_t in the beam
fragmentation region of hadron-nucleus collisions from RHIC (Relativistic Heavy
Ion Collider) to LHC (Large Hadron Collider). The major novelty of this work is
a derivation of the missing virtual radiative pQCD correction to these
processes - the real-emission radiative corrections are already available in
the literature. We manifestly implement the unitarity relation, which in the
simplest form requires that upon summing over the virtual and real-emission
corrections the total number of scattered quarks must exactly equal unity. For
the free-nucleon target, the leading jet spectrum is shown to satisfy the
familiar linear Balitsky-Fadin-Kuraev-Lipatov leading log(1/x) (LL-1/x)
evolution. For nuclear targets, the nonlinear k_t-factorization for the LL-1/x
evolution of the leading jet sepctrum is shown to exactly match the equally
nonlinear LL-1/x evolution of the collective nuclear glue - there emerges a
unique linear k_t-factorization relation between the two nonlinear evolving
nuclear observables. We argue that within the standard dilute uncorrelated
nucleonic gas treatment of heavy nuclei, in the finite energy range from RHIC
to LHC, the leading jet spectrum can be evolved in the LL-1/x
Balitsky-Kovchegov approximation. We comment on the extension of these results
to, and their possible reggeon field theory interpretation for, mid-rapidity
jets at LHC.Comment: 36 pages, 8 eps figs, revised, discussion on reggeon interpretation
and refs. adde
Non-linear BFKL dynamics: color screening vs. gluon fusion
A feasible mechanism of unitarization of amplitudes of deep inelastic
scattering at small values of Bjorken is the gluon fusion. However, its
efficiency depends crucially on the vacuum color screening effect which
accompanies the multiplication and the diffusion of BFKL gluons from small to
large distances. From the fits to lattice data on field strength correlators
the propagation length of perturbative gluons is fermi. The
probability to find a perturbative gluon with short propagation length at large
distances is suppressed exponentially. It changes the pattern of (dif)fusion
dramatically. The magnitude of the fusion effect appears to be controlled by
the new dimensionless parameter , with the diffraction cone
slope standing for the characteristic size of the interaction region. It
should slowly decrease at large . Smallness of the
ratio makes the non-linear effects rather weak even at lowest
Bjorken available at HERA. We report the results of our studies of the
non-linear BFKL equation which has been generalized to incorporate the running
coupling and the screening radius as the infrared regulator.Comment: 16 pages, 2 figures, version accepted for publication, references
adde
Jet quenching with running coupling including radiative and collisional energy losses
We calculate the nuclear modification factor for RHIC and LHC conditions
accounting for the radiative and collisional parton energy loss with the
running coupling constant.We find that the RHIC data can be explained both in
the scenario with the chemically equilibrium quark-gluon plasma and purely
gluonic plasma with slightly different thermal suppression of the coupling
constant. The role of the parton energy gain due to gluon absorption is also
investigated. Our results show that the energy gain gives negligible effect.Comment: 11 pages, 3 figure
Charged currents, color dipoles and xF_3 at small x
We develop the light-cone color dipole description of highly asymmetric
diffractive interactions of left-handed and right-handed electroweak bosons. We
identify the origin and estimate the strength of the left-right asymmetry
effect in terms of the light-cone wave functions. We report an evaluation of
the small-x neutrino-nucleon DIS structure functions xF_3 and 2xF_1 and present
comparison with experimental data.Comment: 11 pages, 3 figures, misprints correcte
Anatomy of the differential gluon structure function of the proton from the experimental data on F_2p
The use of the differential gluon structure function of the proton introduced by Fadin, Kuraev and Lipatov in 1975 is called upon in
many applications of small-x QCD. We report here the first determination of
from the experimental data on the small-x proton structure
function . We give convenient parameterizations for based partly on the available DGLAP evolution fits (GRV, CTEQ &
MRS) to parton distribution functions and on realistic extrapolations into soft
region. We discuss an impact of soft gluons on various observables. The
x-dependence of the so-determined varies strongly with Q^2
and does not exhibit simple Regge properties. None the less the hard-to-soft
diffusion is found to give rise to a viable approximation of the proton
structure function F_{2p}(x,Q^2) by the soft and hard Regge components with
intercepts \Delta_{soft}=0 and \Delta_{hard}\sim 0.4.Comment: 37 pages, 25 figure
Nonlinear k_\perp-factorization for Gluon-Gluon Dijets Produced off Nuclear Targets
The origin of the breaking of conventional linear k_\perp-factorization for
hard processes in a nuclear environment is by now well established. The
realization of the nonlinear nuclear k_\perp-factorization which emerges
instead was found to change from one jet observable to another. Here we report
on an important technical progress, the evaluation of the four-gluon color
dipole cross section operator. It describes the coupled seven-channel
non-Abelian intranuclear evolution of the four-gluon color-singlet states. An
exact diagonalization of this seven-channel problem is possible for large
number of colors N_c and allows a formulation of nonlinear
k_\perp-factorization for production of gluon-gluon dijets. The momentum
spectra for dijets in all possible color representations are reported in the
form of explicit quadratures in terms of the collective nuclear unintegrated
glue. Our results fully corroborate the concept of universality classes.Comment: 53 pages, 9 figures, a few typos fixe
- …