10,869 research outputs found

    Experimental feedback control of quantum systems using weak measurements

    Get PDF
    A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.Comment: 4 pages, 3 figures. v2 Added extra citation, journal reference and DOI. Minor typographic correction

    Consistency of shared reference frames should be reexamined

    Full text link
    In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501 (2007)], four protocols were proposed to secretly transmit a reference frame. Here We point out that in these protocols an eavesdropper can change the transmitted reference frame without being detected, which means the consistency of the shared reference frames should be reexamined. The way to check the above consistency is discussed. It is shown that this problem is quite different from that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom

    Dynamic Scaling in the Susceptibility of the Spin-1\2 Kagome Lattice Antiferromagnet Herbertsmithite

    Full text link
    The spin-1/2 kagome lattice antiferromagnet herbertsmithite, ZnCu3_{3}(OH)6_{6}Cl2_{2}, is a candidate material for a quantum spin liquid ground state. We show that the magnetic response of this material displays an unusual scaling relation in both the bulk ac susceptibility and the low energy dynamic susceptibility as measured by inelastic neutron scattering. The quantity χTα\chi T^\alpha with α0.66\alpha \simeq 0.66 can be expressed as a universal function of H/TH/T or ω/T\omega/T. This scaling is discussed in relation to similar behavior seen in systems influenced by disorder or by the proximity to a quantum critical point.Comment: 5 pages, 3 figures v2: updated to match published version

    Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment

    Get PDF
    We produce and holographically measure entangled qudits encoded in transverse spatial modes of single photons. With the novel use of a quantum state tomography method that only requires two-state superpositions, we achieve the most complete characterisation of entangled qutrits to date. Ideally, entangled qutrits provide better security than qubits in quantum bit-commitment: we model the sensitivity of this to mixture and show experimentally and theoretically that qutrits with even a small amount of decoherence cannot offer increased security over qubits.Comment: Paper updated to match published version; 5 pages, 4 figures, images have been included at slightly lower quality for the archiv

    Holonomic quantum computing in symmetry-protected ground states of spin chains

    Full text link
    While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.Comment: 19 pages, 4 figures. v2: published versio

    Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    Full text link
    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved "off-line," thereby permitting universal continuous-variable quantum computation with linear optics.Comment: 6 pages, no figures, replaced with published versio

    The finite size effect of galaxies on the cosmic virial theorem and the pairwise peculiar velocity dispersions

    Full text link
    We discuss the effect of the finite size of galaxies on estimating small-scale relative pairwise peculiar velocity dispersions from the cosmic virial theorem (CVT). Specifically we evaluate the effect by incorporating the finite core radius rcr_c in the two-point correlation function of mass, i.e. ξρ(r)(r+rc)γ\xi_\rho(r) \propto (r+r_c)^{-\gamma} and the effective gravitational force softening rsr_s on small scales. We analytically obtain the lowest-order correction term for γ<2\gamma <2 which is in quantitative agreement with the full numerical evaluation. With a nonzero rsr_s and/or rcr_c the cosmic virial theorem is no longer limited to the case of γ<2\gamma<2. We present accurate fitting formulae for the CVT predicted pairwise velocity dispersion for the case of γ>2\gamma>2. Compared with the idealistic point-mass approximation (rs=rc=0r_s=r_c=0), the finite size effect can significantly reduce the small-scale velocity dispersions of galaxies at scales much larger than rsr_s and rcr_c. Even without considering the finite size of galaxies, nonzero values for rcr_c are generally expected, for instance, for cold dark matter (CDM) models with a scale-invariant primordial spectrum. For these CDM models, a reasonable force softening r_s\le 100 \hikpc would have rather tiny effect. We present the CVT predictions for the small-scale pairwise velocity dispersion in the CDM models normalized by the COBE observation. The implication of our results for confrontation of observations of galaxy pair-wise velocity dispersions and theoretical predictions of the CVT is also discussed.Comment: 18 pages. LaTeX text and 8 postcript figures. submitted to Ap

    A Classical Bound on Quantum Entropy

    Get PDF
    A classical upper bound for quantum entropy is identified and illustrated, 0Sqln(eσ2/2)0\leq S_q \leq \ln (e \sigma^2 / 2\hbar), involving the variance σ2\sigma^2 in phase space of the classical limit distribution of a given system. A fortiori, this further bounds the corresponding information-theoretical generalizations of the quantum entropy proposed by Renyi.Comment: Latex2e, 7 pages, publication versio

    Dzyaloshinskii-Moriya interaction and spin re-orientation transition in the frustrated kagome lattice antiferromagnet

    Full text link
    Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-5/2 kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H_c, indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180 degrees to ferromagnetically align the canted moments along the field direction. The canted moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For H < H_c, the weak ferromagnetic interlayer coupling forces the spins to align in such an arrangement that the canted components on any two adjacent layers are equal and opposite, yielding a zero net magnetic moment. For H > H_c, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180-degree spin rotation at the transition.Comment: 13 pages, 15 figure

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio
    corecore