3 research outputs found

    Sign-symmetry of temperature structure functions

    Full text link
    New scalar structure functions with different sign-symmetry properties are defined. These structure functions possess different scaling exponents even when their order is the same. Their scaling properties are investigated for second and third orders, using data from high-Reynolds-number atmospheric boundary layer. It is only when structure functions with disparate sign-symmetry properties are compared can the extended self-similarity detect two different scaling ranges that may exist, as in the example of convective turbulence.Comment: 18 pages, 5 figures, accepted for publication in Physical Review

    Beyond scaling and locality in turbulence

    Full text link
    An analytic perturbation theory is suggested in order to find finite-size corrections to the scaling power laws. In the frame of this theory it is shown that the first order finite-size correction to the scaling power laws has following form S(r)crα0[ln(r/η)]α1S(r) \cong cr^{\alpha_0}[\ln(r/\eta)]^{\alpha_1}, where η\eta is a finite-size scale (in particular for turbulence, it can be the Kolmogorov dissipation scale). Using data of laboratory experiments and numerical simulations it is shown shown that a degenerate case with α0=0\alpha_0 =0 can describe turbulence statistics in the near-dissipation range r>ηr > \eta, where the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers the degenerate scaling range covers almost the entire range of scales of velocity structure functions (the log-corrections apply to finite Reynolds number). Interplay between local and non-local regimes has been considered as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of structure functions and extended self-similarity. These results have been also expanded on passive scalar mixing in turbulence. Overlapping phenomenon between local and non-local regimes and a relation between position of maximum of the generalized energy input rate and the actual crossover scale between these regimes are briefly discussed.Comment: extended versio
    corecore