57,083 research outputs found

    Lattice QCD calculation of ππ\pi\pi scattering length

    Full text link
    We study s-wave pion-pion (ππ\pi\pi) scattering length in lattice QCD for pion masses ranging from 330 MeV to 466 MeV. In the "Asqtad" improved staggered fermion formulation, we calculate the ππ\pi\pi four-point functions for isospin I=0 and 2 channels, and use chiral perturbation theory at next-to-leading order to extrapolate our simulation results. Extrapolating to the physical pion mass gives the scattering lengths as mπa0I=2=0.0416(2)m_\pi a_0^{I=2} = -0.0416(2) and mπa0I=0=0.186(2)m_\pi a_0^{I=0} = 0.186(2) for isospin I=2 and 0 channels, respectively. Our lattice simulation for ππ\pi\pi scattering length in the I=0 channel is an exploratory study, where we include the disconnected contribution, and our preliminary result is near to its experimental value. These simulations are performed with MILC 2+1 flavor gauge configurations at lattice spacing a0.15a \approx 0.15 fm.Comment: Remove some typo

    Thermal-stress analysis for a wood composite blade

    Get PDF
    A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report

    Thermal stress analysis for a wood composite blade

    Get PDF
    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented

    Thermal-stress analysis for wood composite blade

    Get PDF
    The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples
    corecore