1,514 research outputs found

    Electromagnetic response and effective gauge theory of graphene in a magnetic field

    Full text link
    The electromagnetic response of graphene in a magnetic field is studied, with particular emphasis on the quantum features of its ground state (vacuum). The graphene vacuum, unlike in conventional quantum Hall systems, is a dielectric medium and carries an appreciable amount of electric and magnetic susceptibilities. The dielectric effect grows rapidly with increasing filling factor nu in such a way that reflects the 'relativistic' Landau-level characteristics of graphene as well as its valley and spin degeneracy. A close look into the dielectric function also reveals that the Coulomb interaction is efficiently screened on the scale of the magnetic length, leading to a prominent reduction of the exciton spectra in graphene. In addition, an effective gauge theory of graphene is constructed out of the response. It is pointed out thereby that the electric susceptibility is generally expressed as a ratio of the Hall conductance to the Landau gap.Comment: 9 pages, 3 figures, revtex, corrected typo

    The Matsubara-Fradkin Thermodynamical Quantization of Podolsky Electrodynamics

    Full text link
    In this work we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.Comment: Submitted to Physical Review

    Holst Actions for Supergravity Theories

    Get PDF
    Holst action containing Immirzi parameter for pure gravity is generalised to the supergravity theories. Supergravity equations of motion are not modified by such generalisations, thus preserving supersymmetry. Dependence on the Immirzi parameter does not emerge in the classical equations of motion. This is in contrast with the recent observation of Perez and Rovelli for gravity action containing original Holst term and a minimally coupled Dirac fermion where the classical equations of motion do develop a dependence on Immirzi parameter.Comment: 15 page

    Photon and electron spectra in hot and dense QED

    Get PDF
    Photon and electron spectra in hot and dense QED are found in the high temperature limit for all |\q| using the Feynman gauge and the one-loop self-energy. All spectra are split by the medium and their branches develop the gap (the dynamical mass) at zero momentum. The photon spectrum has two branches (longitudinal and transverse) with the common mass; but electron spectrum is split on four branches which are well-separated for any |\q| including their |\q|=0 limits (their effective masses). These masses and the photon thermal mass are calculated explicitly and the different limits of spectrum branches are established in detail. The gauge invariance of the high-temperature spectra is briefly discussed.Comment: 9 pages, latex, no figure

    One-particle and collective electron spectra in hot and dense QED and their gauge dependence

    Get PDF
    The one-particle electron spectrum is found for hot and dense QED and its properties are investigated in comparison with the collective spectrum. It is shown that the one-particle spectrum (in any case its zero momentum limit) is gauge invariant, but the collective spectrum, being qualitatively different, is always gauge dependent. The exception is the case m,μ=0m,\mu=0 for which the collective spectrum long wavelength limit demonstrates the gauge invariance as well.Comment: 9 pages, latex, no figure

    Spin solid phases of spin 1 and spin 3/2 antiferromagnets on a cubic lattice

    Get PDF
    We study spin S=1 and S=3/2 Heisenberg antiferromagnets on a cubic lattice focusing on spin solid states. Using Schwinger boson formulation for spins, we start in a U(1) spin liquid phase proximate to Neel phase and explore possible confining paramagnetic phases as we transition away from the spin liquid by the process of monopole condensation. Electromagnetic duality is used to rewrite the theory in terms of monopoles. For spin 1 we find several candidate phases of which the most natural one is a phase with spins organized into parallel Haldane chains. For spin 3/2 we find that the most natural phase has spins organized into parallel ladders. As a by-product, we also write a Landau theory of the ordering in two special classical frustrated XY models on the cubic lattice, one of which is the fully frustrated XY model. In a particular limit our approach maps to a dimer model with 2S dimers coming out of every site, and we find the same spin solid phases in this regime as well.Comment: 15 pages, 8 figure

    Background Free Quantum Gravity based on Conformal Gravity and Conformal Field Theory on M^4

    Full text link
    We study four dimensional quantum gravity formulated as a certain conformal field theory at the ultraviolet fixed point, whose dynamics is described by the combined system of Riegert-Wess-Zumino and Weyl actions. Background free nature comes out as quantum diffeomorphism symmetry by quantizing the conformal factor of the metric field nonperturbatively. In this paper, Minkowski background M^4 is employed in practice. The generator of quantum diffeomorphism that forms conformal algebra is constructed. Using it, we study the composite scalar operator that becomes a good conformal field. We find that physical fields are described by such scalar fields with conformal dimension 4. Consequently, tensor fields outside the unitarity bound are excluded. Computations of quantum algebra on M^4 are carried out in the coordinate space using operator products of the fields. The nilpotent BRST operator is also constructed.Comment: 43 pages, eqs.(3.9) and (6.18) correcte

    The wall of the cave

    Get PDF
    In this article old and new relations between gauge fields and strings are discussed. We add new arguments that the Yang Mills theories must be described by the non-critical strings in the five dimensional curved space. The physical meaning of the fifth dimension is that of the renormalization scale represented by the Liouville field. We analyze the meaning of the zigzag symmetry and show that it is likely to be present if there is a minimal supersymmetry on the world sheet. We also present the new string backgrounds which may be relevant for the description of the ordinary bosonic Yang-Mills theories. The article is written on the occasion of the 40-th anniversary of the IHES.Comment: 18 pages, Late
    • …
    corecore