7,893 research outputs found
Shrimp export from Benin vs food safety in Europe: reconcilable interests?
In order to secure their fishery products market share in the EU, third countries, especially the developing ones, tend to transplant EU requirements into their domestic legal order. In reality, theses transplanted laws do not correspond to measures to reach a level of protection needed by the country of destination. Based upon the case of Benin, this paper intends to show that when these legal transplants are adversely made, they can in some cases have disastrous effects. It can be argued that an unintended result of EU policy was that it contributed to the collapse of the shrimp industry in Benin. The paper moreover argues that despite the stringency of the EU requirements, the implementation of its control policy might inadequately protect European consumers of shrimp.</jats:p
Internal relaxation time in immersed particulate materials
We study the dynamics of the solid to liquid transition for a model material
made of elastic particles immersed in a viscous fluid. The interaction between
particle surfaces includes their viscous lubrication, a sharp repulsion when
they get closer than a tuned steric length and their elastic deflection induced
by those two forces. We use Soft Dynamics to simulate the dynamics of this
material when it experiences a step increase in the shear stress and a constant
normal stress. We observe a long creep phase before a substantial flow
eventually establishes. We find that the typical creep time relies on an
internal relaxation process, namely the separation of two particles driven by
the applied stress and resisted by the viscous friction. This mechanism should
be relevant for granular pastes, living cells, emulsions and wet foams
Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements
International audienceTo understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 ÎĽm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface
Handling Geometric Features in Nanoscale Characterization of Charge Injection and Transport in thin Dielectric Films
International audienceDue to miniaturization and attractiveness of nanosized and/or nanostructured dielectric layers, characterization at the local scale of charge injection and transport phenomena comes to the fore. To that end the electric modes derived from Atomic Force Microscopy (AFM) are more and more frequently used. In this study, the influence of AFM tip-plane system configuration on the electric field distribution is investigated for homogeneous and heterogeneous (nanostructured) thin dielectric layers. The experimental and computing results reveal that the radial component of the electric field conveys the charge lateral spreading whereas the axial component of the electric field governs the amount of injected charges. The electric field distribution is slightly influenced by the heterogeneity of the material. Moreover, the interpretation of the current measurements requires consideration of the entire electric field distribution and not only the computed field at the contact point
- …