90 research outputs found
Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites
Aims. Various nucleosynthesis studies have pointed out that the r-process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, and rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r-process elements jointly with iron, while others do not have any significant iron contribution. We try to (a) characterize these different types of events by their abundance patterns and (b) identify them among the existing set of suggested r-process sites.
Methods. The Pearson and Spearman correlation coefficients were used in order to investigate correlations among r-process elements (X,Y) as well as their relation to iron (Fe) in VMP halo stars. We gradually tracked the evolution of those coefficients in terms of the element enrichments [X/Fe] or [X/Y] and the metallicity [Fe/H]. This approach, aided by cluster analysis to find different structures of abundance patterns and rank tests to identify whether several events contributed to the observed pattern, is new and provides deeper insights into the abundances of VMP stars.
Results. In the early stage of our Galaxy, at least three r-process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r-process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r-process and is responsible for the major fraction of the heavy main r-process elements without a significant coproduction of Fe. It does not appear to be connected to CCSNe, in fact most of the Fe found in the related r-process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r-process sites. We assign these two strong r-process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection with massive single stars (collapsars) forming black holes in the early Galaxy
Co-production of light p-, s- and r-process isotopes in the high-entropy wind of type II supernovae
We have performed large-scale nucleosynthesis calculations within the
high-entropy-wind (HEW) scenario of type II supernovae. The primary aim was to
constrain the conditions for the production of the classical "p-only" isotopes
of the light trans-Fe elements. We find, however, that for electron fractions
in the range 0.458 Y 0.478, sizeable abundances of p-, s- and
r-process nuclei between Zn and Ru are coproduced in the HEW at
low entropies (S 100) by a primary charged-particle process after an
-rich freezeout. With the above Y -- S correlation, most of the
predicted isotopic abundance ratios within a given element (e.g.
Zn(p)/Zn(r) or Mo(p)/Mo(p)), as well as of
neighboring elements (e.g. Ge(s+p)/Se(p) or
Se(p)/Kr(p)) agree with the observed Solar-System ratios. Taking
the Mo isotopic chain as a particularly challenging example, we show that our
HEW model can account for the production of all 7 stable isotopes, from
"p-only" Mo, via "s-only" Mo up to "r-only" Mo.
Furthermore, our model is able to reproduce the isotopic composition of Mo in
presolar SiC X-grains.}Comment: 10 pages, 2 figure
The Ubiquity of the Rapid Neutron-Capture Process
To better characterize the abundance patterns produced by the r-process, we
have derived new abundances or upper limits for the heavy elements zinc (Zn),
yttrium (Y), lanthanum (La), europium (Eu), and lead (Pb). Our sample of 161
metal-poor stars includes new measurements from 88 high resolution and high
signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7m Smith
Telescope at McDonald Observatory, and other abundances are adopted from the
literature. We use models of the s-process in AGB stars to characterize the
high Pb/Eu ratios produced in the s-process at low metallicity, and our new
observations then allow us to identify a sample of stars with no detectable
s-process material. In these stars, we find no significant increase in the
Pb/Eu ratios with increasing metallicity. This suggests that s-process material
was not widely dispersed until the overall Galactic metallicity grew
considerably, perhaps even as high as [Fe/H]=-1.4. We identify a dispersion of
at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe]<+0.6 attributable
to the r-process, suggesting that there is no unique "pure" r-process elemental
ratio among pairs of rare earth elements. We confirm earlier detections of an
anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in
the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy
elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using
simulations of high-entropy neutrino winds of core-collapse supernovae that
include charged-particle and neutron-capture components of r-process
nucleosynthesis. The heavy element abundance patterns in most metal-poor stars
do not resemble that of CS 22892-052, but the presence of heavy elements such
as Ba in nearly all metal-poor stars without s-process enrichment suggests that
the r-process is a common phenomenon.Comment: Accepted for publication in the Astrophysical Journal. 25 pages, 13
figure
Charged-Particle and Neutron-Capture Processes in the High-Entropy Wind of Core-Collapse Supernovae
The astrophysical site of the r-process is still uncertain, and a full
exploration of the systematics of this process in terms of its dependence on
nuclear properties from stability to the neutron drip-line within realistic
stellar environments has still to be undertaken. Sufficiently high neutron to
seed ratios can only be obtained either in very neutron-rich low-entropy
environments or moderately neutron-rich high-entropy environments, related to
neutron star mergers (or jets of neutron star matter) and the high-entropy wind
of core-collapse supernova explosions. As chemical evolution models seem to
disfavor neutron star mergers, we focus here on high-entropy environments
characterized by entropy , electron abundance and expansion velocity
. We investigate the termination point of charged-particle reactions,
and we define a maximum entropy for a given and ,
beyond which the seed production of heavy elements fails due to the very small
matter density. We then investigate whether an r-process subsequent to the
charged-particle freeze-out can in principle be understood on the basis of the
classical approach, which assumes a chemical equilibrium between neutron
captures and photodisintegrations, possibly followed by a -flow
equilibrium. In particular, we illustrate how long such a chemical equilibrium
approximation holds, how the freeze-out from such conditions affects the
abundance pattern, and which role the late capture of neutrons originating from
-delayed neutron emission can play.Comment: 52 pages, 31 figure
The Hamburg/ESO R-process Enhanced Star survey (HERES) IV. Detailed abundance analysis and age dating of the strongly r-process enhanced stars CS 29491-069 and HE 1219-0312
We report on a detailed abundance analysis of two strongly r-process
enhanced, very metal-poor stars newly discovered in the HERES project, CS
29491-069 ([Fe/H]=-2.51, [r/Fe]=+1.1) and HE 1219-0312 ([Fe/H]=-2.96,
[r/Fe]=+1.5). The analysis is based on high-quality VLT/UVES spectra and MARCS
model atmospheres. We detect lines of 15 heavy elements in the spectrum of CS
29491-069, and 18 in HE 1219-0312; in both cases including the Th II 4019 {\AA}
line. The heavy-element abundance patterns of these two stars are mostly
well-matched to scaled solar residual abundances not formed by the s-process.
We also compare the observed pattern with recent high-entropy wind (HEW)
calculations, which assume core-collapse supernovae of massive stars as the
astrophysical environment for the r-process, and find good agreement for most
lanthanides. The abundance ratios of the lighter elements strontium, yttrium,
and zirconium, which are presumably not formed by the main r-process, are
reproduced well by the model. Radioactive dating for CS 29491-069 with the
observed thorium and rare-earth element abundance pairs results in an average
age of 9.5 Gyr, when based on solar r-process residuals, and 17.6 Gyr, when
using HEW model predictions. Chronometry seems to fail in the case of HE
1219-0312, resulting in a negative age due to its high thorium abundance. HE
1219-0312 could therefore exhibit an overabundance of the heaviest elements,
which is sometimes called an "actinide boost"
The Influence Of Neutron Capture Rates On The Rare Earth Region Of The r-Process Abundance Pattern
We study the sensitivity of the r-process abundance pattern to neutron
capture rates along the rare earth region (A~150 to A~180). We introduce the
concepts of large nuclear flow and flow saturation which determine the neutron
capture rates that are influential in setting the rare earth abundances. We
illustrate the value of the two concepts by considering high entropy conditions
favorable for rare earth peak production and identifying important neutron
capture rates among the rare earth isotopes. We also show how these rates
influence nuclear flow and specific sections of the abundance pattern.Comment: 14 pages, 7 figures, submitted to PR
Nucleosynthesis in the Early Galaxy
Recent observations of r-process-enriched metal-poor star abundances reveal a
non-uniform abundance pattern for elements . Based on non-correlation
trends between elemental abundances as a function of Eu-richness in a large
sample of metal-poor stars, it is shown that the mixing of a consistent and
robust light element primary process (LEPP) and the r-process pattern found in
r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we
derive the abundance pattern of the LEPP from observation and show that it is
consistent with a missing component in the solar abundances when using a recent
s-process model. As the astrophysical site of the LEPP is not known, we explore
the possibility of a neutron capture process within a site-independent
approach. It is suggested that scenarios with neutron densities
or in the range best
explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical
Journa
New attempts to understand nanodiamond stardust
We report on a concerted effort aimed at understanding the origin and history
of the pre-solar nanodiamonds in meteorites including the astrophysical sources
of the observed isotopic abundance signatures. This includes measurement of
light elements by secondary ion mass spectrometry (SIMS), analysis of
additional heavy trace elements by accelerator mass spectrometry (AMS) and
dynamic calculations of r-process nucleosynthesis with updated nuclear
properties. Results obtained indicate: a) there is no evidence for the former
presence of now extinct 26Al and 44Ti in our diamond samples other than what
can be attributed to silicon carbide and other "impurities"; this does not
offer support for a supernova (SN) origin but neither does it negate it; b)
analysis by AMS of platinum in "bulk diamond" yields an overabundance of r-only
198Pt that at face value seems more consistent with the neutron burst than with
the separation model for the origin of heavy trace elements in the diamonds,
although this conclusion is not firm given analytical uncertainties; c) if the
Xe-H pattern was established by an unadulterated r-process, it must have been a
strong variant of the main r-process, which possibly could also account for the
new observations in platinum.Comment: Workshop on Astronomy with Radioactvities VII; Publications of the
Astronomical Society of Australia, accepte
Nucleosynthesis Modes in the High-Entropy-Wind of Type II Supernovae: Comparison of Calculations with Halo-Star Observations
While the high-entropy wind (HEW) of Type II supernovae remains one of the
more promising sites for the rapid neutron-capture (r-) process, hydrodynamic
simulations have yet to reproduce the astrophysical conditions under which the
latter occurs. We have performed large-scale network calculations within an
extended parameter range of the HEW, seeking to identify or to constrain the
necessary conditions for a full reproduction of all r-process residuals
N_{r,\odot}=N_{\odot}-N_{s,\odot} by comparing the results with recent
astronomical observations. A superposition of weighted entropy trajectories
results in an excellent reproduction of the overall N_{r,\odot}-pattern beyond
Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW
calculations indicate a transition from the need for clearly different sources
(conditions/sites) to a possible co-production with r-process elements,
provided that a range of entropies are contributing. This explains recent
halo-star observations of a clear non-correlation of Zn and Ge and a weak
correlation of Sr - Zr with heavier r-process elements. Moreover, new
observational data on Ru and Pd seem to confirm also a partial correlation with
Sr as well as the main r-process elements (e.g. Eu).Comment: 15 pages, 1 table, 4 figures; To be published in the Astrophysical
Journal Letter
- …