24,996 research outputs found

    Electroweak Theory Without Higgs Bosons

    Full text link
    A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the non-neutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalisation. The renormalisation extends to all orders. The masses emerge on renormalisation to one loop. To one loop the neutrinos are massless, the A -> Z transition drops out of the theory, the d quark is unstable and S-matrix elements are independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso

    A Noisy Monte Carlo Algorithm

    Full text link
    We propose a Monte Carlo algorithm to promote Kennedy and Kuti's linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. This is achieved by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations. We test it on the five state model and obtain desirable results even for the case with large noise. We also discuss its application to lattice QCD with stochastically estimated fermion determinants.Comment: 10 pages, 1 tabl

    Exact Ground States in Spin Systems with Orbital Degeneracy

    Full text link
    We present exact ground states in spin models with orbital generacy in one and higher dimensions. A method to obtain the exact ground states of the models when the Hamiltonians are composed of the products of two commutable operators is proposed. For the case of the spin-1/2 model with two-fold degeneracy some exact ground states are given, such as the Valence-Bond (VB), the magnetically ordered, and the orbitally ordered states under particular parameter regimes. We also find the models with the higher spin and degeneracy which have the new types of VB ground states in the spin and the orbital sectors.Comment: 4 pages(JPSJ.sty), 2 figures(EPS), to appear in J. Phys. Soc. Jpn. 68, No.2 (1999) 32

    Tunneling and transmission resonances of a Dirac particle by a double barrier

    Full text link
    We calculate the tunneling process of a Dirac particle across two square barriers separated a distance dd, as well as the scattering by a double cusp barrier where the centers of the cusps are separated a distance larger than their screening lengths. Using the scattering matrix formalism, we obtain the transmission and reflection amplitudes for the scattering processes of both configurations. We show that, the presence of transmission resonances modifies the Lorentizian shape of the energy resonances and induces the appearance of additional maxima in the transmission coefficient in the range of energies where transmission resonances occur. We calculate the Wigner time-delay and show how their maxima depend on the position of the transmission resonance.Comment: To appear in Physica Script

    First order magnetic transition in CeFe2_2 alloys: Phase-coexistence and metastability

    Full text link
    First order ferromagnetic (FM) to antiferromagnetic (AFM) phase transition in doped-CeFe2_2 alloys is studied with micro-Hall probe technique. Clear visual evidence of magnetic phase-coexistence on micrometer scales and the evolution of this phase-coexistence as a function of temperature, magnetic field and time across the first order FM-AFM transition is presented. Such phase-coexistence and metastability arise as natural consequence of an intrinsic disorder-influenced first order transition. Generality of this phenomena involving other classes of materials is discussed.Comment: 11 pages of text and 3 figure

    Equivalent layered models for functionally graded plates

    Get PDF
    Functionally graded plates whose material properties vary continuously through the thickness are modelled as exactly equivalent plates composed of up to four isotropic layers. Separate models are derived for analysis using classical plate theory, first-order and higher-order shear deformation theory. For cases where Poisson’s ratio varies through the thickness, the integrations required to obtain the membrane, coupling and out-of-plane stiffness matrices are performed accurately using a series solution. The model is verified by comparison with well converged solutions from approximate models in which the plate is divided into many isotropic layers. Critical buckling loads and undamped natural frequencies are found for a range of illustrative examples
    corecore