4 research outputs found
Does the universe in fact contain almost no information?
At first sight, an accurate description of the state of the universe appears
to require a mind-bogglingly large and perhaps even infinite amount of
information, even if we restrict our attention to a small subsystem such as a
rabbit. In this paper, it is suggested that most of this information is merely
apparent, as seen from our subjective viewpoints, and that the algorithmic
information content of the universe as a whole is close to zero. It is argued
that if the Schr\"odinger equation is universally valid, then decoherence
together with the standard chaotic behavior of certain non-linear systems will
make the universe appear extremely complex to any self-aware subsets that
happen to inhabit it now, even if it was in a quite simple state shortly after
the big bang. For instance, gravitational instability would amplify the
microscopic primordial density fluctuations that are required by the Heisenberg
uncertainty principle into quite macroscopic inhomogeneities, forcing the
current wavefunction of the universe to contain such Byzantine superpositions
as our planet being in many macroscopically different places at once. Since
decoherence bars us from experiencing more than one macroscopic reality, we
would see seemingly complex constellations of stars etc, even if the initial
wavefunction of the universe was perfectly homogeneous and isotropic.Comment: 17 pages, LATeX, no figures. Online with refs at
http://astro.berkeley.edu/~max/nihilo.html (faster from the US), from
http://www.mpa-garching.mpg.de/~max/nihilo.html (faster from Europe) or from
[email protected]