7,180 research outputs found
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength
Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study
We present ab initio local-density-functional electronic structure
calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically
stable reconstructions, namely the N adatom, N3 triangle models on the (111),
the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are
investigated. Band structure and properties of the surface states are discussed
in detail.Comment: 8 pages, 12 figure
Investigating situated cultural practices through cross-sectoral digital collaborations: policies, processes, insights
The (Belfast) Good Friday Agreement represents a major milestone in Northern Ireland's recent political history, with complex conditions allowing for formation of a ‘cross-community’ system of government enabling power sharing between parties representing Protestant/loyalist and Catholic/nationalist constituencies. This article examines the apparent flourishing of community-focused digital practices over the subsequent ‘post-conflict’ decade, galvanised by Northern Irish and EU policy initiatives armed with consolidating the peace process. Numerous digital heritage and storytelling projects have been catalysed within programmes aiming to foster social processes, community cohesion and cross-community exchange. The article outlines two projects—‘digital memory boxes’ and ‘interactive galleon’—developed during 2007–2008 within practice-led PhD enquiry conducted in collaboration with the Nerve Centre, a third-sector media education organisation. The article goes on to critically examine the processes involved in practically realising, and creatively and theoretically reconciling, community-engaged digital production in a particular socio-political context of academic-community collaboration
Single-Pion Production in pp Collisions at 0.95 GeV/c (II)
The single-pion production reactions , and
were measured at a beam momentum of 0.95 GeV/c (
400 MeV) using the short version of the COSY-TOF spectrometer. The central
calorimeter provided particle identification, energy determination and neutron
detection in addition to time-of-flight and angle measurements from other
detector parts. Thus all pion production channels were recorded with 1-4
overconstraints. Main emphasis is put on the presentation and discussion of the
channel, since the results on the other channels have already been
published previously. The total and differential cross sections obtained are
compared to theoretical calculations. In contrast to the channel we
find in the channel a strong influence of the excitation
already at this energy close to threshold. In particular we find a dependence in the pion angular distribution, typical for a
pure s-channel excitation and identical to that observed in the
channel. Since the latter is understood by a s-channel resonance in
the partial wave, we discuss an analogous scenario for the
channel
First-principles calculations of the phonon dispersion curves of H on Pt(111)
We have calculated the surface phonon dispersion curves for H on Pt(111),
using first-principles, total energy calculations based on a mixed-basis set
and norm-conserving pseudopotentials. Linear response theory and the harmonic
approximation are invoked. For one monolayer of H in the preferred adsorption
site (fcc hollow) vibrational modes polarized parallel and perpendicular to the
surface are found, respectively, at 73.5 meV and 142.6 meV, at the Γ point
of the surface Brillouin zone. The degeneracy of the parallel mode is lifted at
the zone boundaries, yielding energies of 69.6 meV and 86.3 meV at the M point
and 79.4 meV and 80.8 meV at the K point. The dispersion curves for H
adsorption at the hcp hollow site differ only slightly from the above. In
either case, H adsorption has considerable impact on the substrate modes; in
particular the surface mode in the gap in the bulk phonon spectrum (around M
point) is pushed into the bulk band. For on-top H adsorption, modes polarized
parallel and perpendicular to the surface have respective energies of 47.4 meV
and 277.2 meV, at the Γ point. The former disperses to 49.1 meV and 59.5
meV at the M point and to 56 meV and 56.7 meV at the K point. The H vibrational
mode polarized perpendicular to the surface shows little dispersion, in all
three cases considered. Insights are obtained from the hybridization of the H
and Pt electronic states.Comment: 26 pages, 6 figure
Electronic structure and the minimum conductance of a graphene layer on SiO2 from density-functional methods.
The effect of the SiO substrate on a graphene film is investigated using
realistic but computationally convenient energy-optimized models of the
substrate supporting a layer of graphene. The electronic bands are calculated
using density-functional methods for several model substrates. This provides an
estimate of the substrate-charge effects on the behaviour of the bands near
, as well as a variation of the equilibrium distance of the graphene
sheet. A model of a wavy graphene layer is examined as a possible candidate for
understanding the nature of the minimally conducting states in graphene.Comment: 6 pages, 5 figure
(Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding
Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond
(111) surface, based on the effective many-body Brenner potential, yield the
Pandey reconstruction in agreement with \emph{ab-initio}
calculations and predict the existence of new meta-stable states, very near in
energy, with all surface atoms in three-fold graphite-like bonding. We believe
that the long-standing debate on the structural and electronic properties of
this surface could be solved by considering this type of carbon-specific
configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00).
For many additional details (animations, xyz files) see electronic supplement
to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm
On the Production of Pairs in pp Collisions at 0.8 GeV
Data accumulated recently for the exclusive measurement of the reaction at a beam energy of 0.793 GeV using the COSY-TOF
spectrometer have been analyzed with respect to possible events from the reaction channel. The latter is expected to be the only
production channel, which contains no major contributions from
resonance excitation close to threshold and hence should be a good testing
ground for chiral dynamics in the production process. No single event
has been found, which meets all conditions for being a candidate for the reaction. This gives an upper limit for the cross section of
0.16 b (90% C.L.), which is more than an order of magnitude smaller than
the cross sections of the other two-pion production channels at the same
incident energy
The Role of the Environment in Chaotic Quantum Dynamics
We study how the interaction with an external incoherent environment induces
a crossover from quantum to classical behavior for a particle whose classical
motion is chaotic. Posing the problem in the semiclassical regime, we find that
noise produced by the bath coupling rather than dissipation is primarily
responsible for the dephasing that results in the ``classicalization'' of the
particle. We find that the bath directly alters the phase space structures that
signal the onset of classical chaos. This dephasing is shown to have a
semiclassical interpretation: the noise renders the interfering paths
indistinguishable and therefore incoherent. The noise is also shown to
contribute to the quantum inhibition of mixing by creating new paths that
interfere coherently.Comment: 10 pages RevTex. Three figures in Postscript as a uuencoded
compressed tar file have been submitted as wel
- …