8 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A Localized Bloom Filter-Based CP-ABE in Smart Healthcare

    No full text
    Wearable technology-supported cloud-based smart health (s-health) has emerged as a promising answer to increase the efficiency and quality of healthcare as a result of rapid improvements in Internet of Things (IoT) technologies. However, the issues of data security and privacy preservation have not been fully resolved. In recent years, ciphertext policy attribute-based encryption (CP-ABE), which was developed as a versatile and potent cryptographic fundamental to accomplish one-to-many encryption with fine-grained access control, has been seen as a viable answer to the security issue in the cloud. The attribute values in the access policy, however, are supplied in cleartext in standard CP-ABE. This will conveniently reveal the data owners’ privacy (patients). Because the Internet of Things (IoT) in healthcare stores sensitive data in the cloud, security is crucial. The data must always be accessed via an access key when using traditional encryption techniques. Though the data cannot be accessed right away in an emergency, this offers greater security. The healthcare IoT created the break-glass concept to address this. The encryption technique is integrated with the broken glass idea to offer data protection and simple access in emergency scenarios. The majority of research papers employ cypher text policy attribute-based encryption (CP-ABE) with the broken glass idea to secure electronic health records. For improving data accessibility in the smart healthcare environment, modified cypher text policy attribute-based encryption (MCP-ABE) with the broken glass (BG) technique is suggested. Greater information security is achieved with this method, but the access policy is also dependent on keys that are vulnerable to hacking. To analyze the access policy individually throughout the key generation process, the attribute-based encryption procedure in this case uses the bloom filter. Information about the access policy is kept intact, which enhances the security of the keys. To continue serving patients and saving their lives, this modified CP-ABE is integrated with break glass in the smart healthcare facility. The experimental results demonstrated that, when compared to the lightweight break-glass procedure, the proposed solution is likewise the best in terms of decreased overhead. The main benefit of this strategy is that it uses the bloom filter concept in the MCP-ABE process, which protects the access policy attributes, to ensure that the key is never compromised. For data access in smart healthcare to preserve patients’ lives, the proposed MCP-ABE with broken glass is best

    A Localized Bloom Filter-Based CP-ABE in Smart Healthcare

    No full text
    Wearable technology-supported cloud-based smart health (s-health) has emerged as a promising answer to increase the efficiency and quality of healthcare as a result of rapid improvements in Internet of Things (IoT) technologies. However, the issues of data security and privacy preservation have not been fully resolved. In recent years, ciphertext policy attribute-based encryption (CP-ABE), which was developed as a versatile and potent cryptographic fundamental to accomplish one-to-many encryption with fine-grained access control, has been seen as a viable answer to the security issue in the cloud. The attribute values in the access policy, however, are supplied in cleartext in standard CP-ABE. This will conveniently reveal the data owners’ privacy (patients). Because the Internet of Things (IoT) in healthcare stores sensitive data in the cloud, security is crucial. The data must always be accessed via an access key when using traditional encryption techniques. Though the data cannot be accessed right away in an emergency, this offers greater security. The healthcare IoT created the break-glass concept to address this. The encryption technique is integrated with the broken glass idea to offer data protection and simple access in emergency scenarios. The majority of research papers employ cypher text policy attribute-based encryption (CP-ABE) with the broken glass idea to secure electronic health records. For improving data accessibility in the smart healthcare environment, modified cypher text policy attribute-based encryption (MCP-ABE) with the broken glass (BG) technique is suggested. Greater information security is achieved with this method, but the access policy is also dependent on keys that are vulnerable to hacking. To analyze the access policy individually throughout the key generation process, the attribute-based encryption procedure in this case uses the bloom filter. Information about the access policy is kept intact, which enhances the security of the keys. To continue serving patients and saving their lives, this modified CP-ABE is integrated with break glass in the smart healthcare facility. The experimental results demonstrated that, when compared to the lightweight break-glass procedure, the proposed solution is likewise the best in terms of decreased overhead. The main benefit of this strategy is that it uses the bloom filter concept in the MCP-ABE process, which protects the access policy attributes, to ensure that the key is never compromised. For data access in smart healthcare to preserve patients’ lives, the proposed MCP-ABE with broken glass is best

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    International audienc
    corecore