132 research outputs found
Portable implementation of a quantum thermal bath for molecular dynamics simulations
Recently, Dammak and coworkers (H. Dammak, Y. Chalopin, M. Laroche, M.
Hayoun, and J.J. Greffet. Quantumthermal bath for molecular dynamics
simulation. Phys. Rev. Lett., 103:190601, 2009.) proposed that the quantum
statistics of vibrations in condensed systems at low temperature could be
simulated by running molecular dynamics simulations in the presence of a
colored noise with an appropriate power spectral density. In the present
contribution, we show how this method can be implemented in a flexible manner
and at a low computational cost by synthesizing the corresponding noise 'on the
fly'. The proposed algorithm is tested for a simple harmonic chain as well as
for a more realistic model of aluminium crystal. The energy and Debye-Waller
factor are shown to be in good agreement with those obtained from harmonic
approximations based on the phonon spectrum of the systems. The limitations of
the method associated with anharmonic effects are also briefly discussed. Some
perspectives for disordered materials and heat transfer are considered.Comment: Accepted for publication in Journal of Statistical Physic
Crater formation by fast ions: comparison of experiment with Molecular Dynamics simulations
An incident fast ion in the electronic stopping regime produces a track of
excitations which can lead to particle ejection and cratering. Molecular
Dynamics simulations of the evolution of the deposited energy were used to
study the resulting crater morphology as a function of the excitation density
in a cylindrical track for large angle of incidence with respect to the surface
normal. Surprisingly, the overall behavior is shown to be similar to that seen
in the experimental data for crater formation in polymers. However, the
simulations give greater insight into the cratering process. The threshold for
crater formation occurs when the excitation density approaches the cohesive
energy density, and a crater rim is formed at about six times that energy
density. The crater length scales roughly as the square root of the electronic
stopping power, and the crater width and depth seem to saturate for the largest
energy densities considered here. The number of ejected particles, the
sputtering yield, is shown to be much smaller than simple estimates based on
crater size unless the full crater morphology is considered. Therefore, crater
size can not easily be used to estimate the sputtering yield.Comment: LaTeX, 7 pages, 5 EPS figures. For related figures/movies, see:
http://dirac.ms.virginia.edu/~emb3t/craters/craters.html New version uploaded
5/16/01, with minor text changes + new figure
Exploiting Mitochondrial Dysfunction for Effective Elimination of Imatinib-Resistant Leukemic Cells
Challenges today concern chronic myeloid leukemia (CML) patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention
Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review
Background Biomarkers that can predict the prognosis of colorectal cancer (CRC) patients and that can stratify high-risk early stage patients from low-risk early stage patients are urgently needed for better management of CRC. During the last decades, a large variety of prognostic DNA methylation markers has been published in the literature. However, to date, none of these markers are used in clinical practice. Methods To obtain an overview of the number of published prognostic methylation markers for CRC, the number of markers that was validated independently, and the current level of evidence (LoE), we conducted a systematic review of PubMed, EMBASE, and MEDLINE. In addition, we scored studies based on the REMARK guidelines that were established in order to attain more transparency and complete reporting of prognostic biomarker studies. Eighty-three studies reporting on 123 methylation markers fulfilled the study entry criteria and were scored according to REMARK. Results Sixty-three studies investigated single methylation markers, whereas 20 studies reported combinations of methylation markers. We observed substantial variation regarding the reporting of sample sizes and patient characteristics, statistical analyses, and methodology. The median (range) REMARK score for the studies was 10.7 points (4.5 to 17.5) out of a maximum of 20 possible points. The median REMARK score was lower in studies, which reported a p value below 0.05 versus those, which did not (p = 0.005). A borderline statistically significant association was observed between the reported p value of the survival analysis and the size of the study population (p = 0.051). Only 23 out of 123 markers (17%) were investigated in two or more study series. For 12 markers, and two multimarker panels, consistent results were reported in two or more study series. For four markers, the current LoE is level II, for all other markers, the LoE is lower. Conclusion This systematic review reflects that adequate reporting according to REMARK and validation of prognostic methylation markers is absent in the majority of CRC methylation marker studies. However, this systematic review provides a comprehensive overview of published prognostic methylation markers for CRC and highlights the most promising markers that have been published in the last two decades
Progress on lead-free metal halide perovskites for photovoltaic applications: a review
ABSTRACT: Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawback that these high efficiencies can only be obtained with lead-based perovskites and this will arguably be a substantial hurdle for various applications of perovskite-based photovoltaics and their acceptance in society, even though the amounts of lead in the solar cells are low. This fact opened up a new research field on lead-free metal halide perovskites, which is currently remarkably vivid. We took this as incentive to review this emerging research field and discuss possible alternative elements to replace lead in metal halide perovskites and the properties of the corresponding perovskite materials based on recent theoretical and experimental studies. Up to now, tin-based perovskites turned out to be most promising in terms of power conversion efficiency; however, also the toxicity of these tin-based perovskites is argued. In the focus of the research community are other elements as well including germanium, copper, antimony, or bismuth, and the corresponding perovskite compounds are already showing promising properties. GRAPHICAL ABSTRACT: [Image: see text
- …