36,760 research outputs found

    Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?

    Full text link
    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (>6 Mm) using multi-wavelength observations of limb spicules in different chromospheric spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083 nm). We determine the line width of individual spicules and throughout the field of view and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular spicules reach a maximal height of about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. Both the kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.Comment: Accepted for publication in Solar Physics, 52 pages, 32 figure

    The polarization signature of photospheric magnetic fields in 3D MHD simulations and observations at disk center

    Full text link
    Before using 3D MHD simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112 and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SP, TIP, POLIS and the GFPI, respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS and GFPI observations.Comment: 12 pages, 11 figures; accepted for publication in Ap

    Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations

    Full text link
    Numerical 3D radiative (M)HD simulations of solar convection are used to understand the physical properties of the solar photosphere. To validate this approach, it is important to check that no excessive thermodynamic fluctuations arise as a consequence of the partially incomplete treatment of radiative transfer. We investigate the realism of 3D convection simulations carried out with the Stagger code. We compared the characteristic properties of several spectral lines in solar disc centre observations with spectra synthesized from the simulations. We degraded the synthetic spectra to the spatial resolution of the observations using the continuum intensity distribution. We estimated the necessary spectral degradation by comparing atlas spectra with averaged observed spectra. In addition to deriving a set of line parameters directly, we used the SIR code to invert the spectra. Most of the line parameters from the observational data are matched well by the degraded simulation spectra. The inversions predict a macroturbulent velocity below 10 m/s for the simulation at full spatial resolution, whereas they yield ~< 1000 m/s at a spatial resolution of 0.3". The temperature fluctuations in the inversion of the degraded simulation do not exceed those from the observational data (of the order of 100-200 K rms for -2<log tau<-0.5). The comparison of line parameters in spatially averaged profiles with the averaged values of line parameters in spatially resolved profiles indicates a significant change of (average) line properties at a spatial scale between 0.13" and 0.3". Up to a spatial resolution of 0.3", we find no indications of the presence of excessive thermodynamic fluctuations in the 3D HD simulation. To definitely confirm that simulations without spatial degradation contain fully realistic thermodynamic fluctuations requires observations at even better spatial resolution.Comment: 21 pages, 15 figures + 2 pages Appendix, accepted for publication in A&A; v2 version: corrected for an error in the calculation of stray-light estimates, for details see the Corrigendum to A&A, 2013, 557, 109 (DOI: 10.1051/0004-6361/201321596). Corrected text and numbers are in bold font. Apart from the stray-light estimates, nothing in the rest of the paper was affected by the erro

    California Horse Racing Board

    Get PDF

    California Horse Racing Board

    Get PDF

    California Horse Racing Board

    Get PDF

    Coulomb Charging Effects for Finite Channel Number

    Full text link
    We consider quantum fluctuations of the charge on a small metallic grain caused by virtual electron tunneling to a nearby electrode. The average electron number and the effective charging energy are determined by means of perturbation theory in the tunneling Hamiltonian. In particular we discuss the dependence of charging effects on the number N of tunneling channels. Earlier results for N>>1 are found to be approached rather rapidly with increasing N.Comment: 6 pages, 5 figure
    corecore