3,520 research outputs found
Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths
We optimize chiral interactions at next-to-next-to leading order to
observables in two- and three-nucleon systems, and compute Gamow-Teller
transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body
currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22
and fluorine-24 via an isospin-breaking coupled-cluster technique, with several
predictions. The two-body currents reduce the Ikeda sum rule, corresponding to
a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life
of carbon-14 depends on the energy of the first excited 1+ state, the
three-nucleon force, and the two-body current
Discrepancy between experimental and theoretical -decay rates resolved from first principles
-decay, a process that changes a neutron into a proton (and vice
versa), is the dominant decay mode of atomic nuclei. This decay offers a unique
window to physics beyond the standard model, and is at the heart of
microphysical processes in stellar explosions and the synthesis of the elements
in the Universe. For 50 years, a central puzzle has been that observed
-decay rates are systematically smaller than theoretical predictions.
This was attributed to an apparent quenching of the fundamental coupling
constant 1.27 in the nucleus by a factor of about 0.75 compared
to the -decay of a free neutron. The origin of this quenching is
controversial and has so far eluded a first-principles theoretical
understanding. Here we address this puzzle and show that this quenching arises
to a large extent from the coupling of the weak force to two nucleons as well
as from strong correlations in the nucleus. We present state-of-the-art
computations of -decays from light to heavy nuclei. Our results are
consistent with experimental data, including the pioneering measurement for
Sn. These theoretical advances are enabled by systematic effective
field theories of the strong and weak interactions combined with powerful
quantum many-body techniques. This work paves the way for systematic
theoretical predictions for fundamental physics problems. These include the
synthesis of heavy elements in neutron star mergers and the search for
neutrino-less double--decay, where an analogous quenching puzzle is a
major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure
Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry
We present transport measurements of a tunable silicon
metal-oxide-semiconductor double quantum dot device with lateral geometry.
Experimentally extracted gate-to-dot capacitances show that the device is
largely symmetric under the gate voltages applied. Intriguingly, these gate
voltages themselves are not symmetric. Comparison with numerical simulations
indicates that the applied gate voltages serve to offset an intrinsic asymmetry
in the physical device. We also show a transition from a large single dot to
two well isolated coupled dots, where the central gate of the device is used to
controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter
Enhancement mode double top gated MOS nanostructures with tunable lateral geometry
We present measurements of silicon (Si) metal-oxide-semiconductor (MOS)
nanostructures that are fabricated using a process that facilitates essentially
arbitrary gate geometries. Stable Coulomb blockade behavior free from the
effects of parasitic dot formation is exhibited in several MOS quantum dots
with an open lateral quantum dot geometry. Decreases in mobility and increases
in charge defect densities (i.e. interface traps and fixed oxide charge) are
measured for critical process steps, and we correlate low disorder behavior
with a quantitative defect density. This work provides quantitative guidance
that has not been previously established about defect densities for which Si
quantum dots do not exhibit parasitic dot formation. These devices make use of
a double-layer gate stack in which many regions, including the critical gate
oxide, were fabricated in a fully-qualified CMOS facility.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in Phys. Rev.
Labeling the human skeleton with 41Ca to assess changes in bone calcium metabolism
Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable ∼150days post-dosing when excreted tracer originates mainly from bon
Light-cone Gauge Superstring Field Theory and Dimensional Regularization II
We propose a dimensional regularization scheme to deal with the divergences
caused by colliding supercurrents inserted at the interaction points, in the
light-cone gauge NSR superstring field theory. We formulate the theory in
dimensions and define the amplitudes as analytic functions of . With an
appropriately chosen three-string interaction term and large negative , the
tree level amplitudes for the (NS,NS) closed strings can be recast into a BRST
invariant form, using the superconformal field theory proposed in
Ref.[arXiv:0911.3704]. We show that in the limit they coincide with
the results of the first quantized theory. Therefore we obtain the desired
results without adding any contact interaction terms to the action.Comment: 23 pages; v2: minor modifications; v3: revised argument in section 3,
added appendix C, results unchanged; v4: added clarifications, two figures
and a footnote; v5: minor modification
Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229
In-source resonance ionization spectroscopy was used to identify an efficient
and selective three step excitation/ionization scheme of thorium, suitable for
titanium:sapphire (Ti:sa) lasers. The measurements were carried out in
preparation of laser spectroscopic investigations for an identification of the
low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground
state. Using a sample of Th-232, a multitude of optical transitions leading to
over 20 previously unknown intermediate states of even parity as well as
numerous high-lying odd parity auto-ionizing states were identified. Level
energies were determined with an accuracy of 0.06 cm-1 for intermediate and
0.15 cm-1 for auto-ionizing states. Using different excitation pathways an
assignment of total angular momenta for several energy levels was possible. One
particularly efficient ionization scheme of thorium, exhibiting saturation in
all three optical transitions, was studied in detail. For all three levels in
this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230
relative to Th-232 were measured. An overall efficiency including ionization,
transport and detection of 0.6 was determined, which was predominantly limited
by the transmission of the mass spectrometer ion optics
- …