2,772 research outputs found

    Logarithmic bump conditions for Calderón-Zygmund operators on spaces of homogeneous type

    Get PDF
    We establish two-weight norm inequalities for singular integral operators defined on spaces of homogeneous type. We do so first when the weights satisfy a double bump condition and then when the weights satisfy separated logarithmic bump conditions. Our results generalize recent work on the Euclidean case, but our proofs are simpler even in this setting. The other interesting feature of our approach is that we are able to prove the separated bump results (which always imply the corresponding double bump results) as a consequence of the double bump theorem

    Boundedness of Pseudodifferential Operators on Banach Function Spaces

    Full text link
    We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space X(Rn)X(\mathbb{R}^n) and on its associate space X(Rn)X'(\mathbb{R}^n), then a pseudodifferential operator Op(a)\operatorname{Op}(a) is bounded on X(Rn)X(\mathbb{R}^n) whenever the symbol aa belongs to the H\"ormander class Sρ,δn(ρ1)S_{\rho,\delta}^{n(\rho-1)} with 0<ρ10<\rho\le 1, 0δ<10\le\delta<1 or to the the Miyachi class Sρ,δn(ρ1)(ϰ,n)S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n) with 0δρ10\le\delta\le\rho\le 1, 0δ00\le\delta0. This result is applied to the case of variable Lebesgue spaces Lp()(Rn)L^{p(\cdot)}(\mathbb{R}^n).Comment: To appear in a special volume of Operator Theory: Advances and Applications dedicated to Ant\'onio Ferreira dos Santo

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    The s\ell^s-boundedness of a family of integral operators on UMD Banach function spaces

    Full text link
    We prove the s\ell^s-boundedness of a family of integral operators with an operator-valued kernel on UMD Banach function spaces. This generalizes and simplifies earlier work by Gallarati, Veraar and the author, where the s\ell^s-boundedness of this family of integral operators was shown on Lebesgue spaces. The proof is based on a characterization of s\ell^s-boundedness as weighted boundedness by Rubio de Francia.Comment: 13 pages. Generalization of arXiv:1410.665

    Maximal regularity for non-autonomous equations with measurable dependence on time

    Get PDF
    In this paper we study maximal LpL^p-regularity for evolution equations with time-dependent operators AA. We merely assume a measurable dependence on time. In the first part of the paper we present a new sufficient condition for the LpL^p-boundedness of a class of vector-valued singular integrals which does not rely on H\"ormander conditions in the time variable. This is then used to develop an abstract operator-theoretic approach to maximal regularity. The results are applied to the case of mm-th order elliptic operators AA with time and space-dependent coefficients. Here the highest order coefficients are assumed to be measurable in time and continuous in the space variables. This results in an Lp(Lq)L^p(L^q)-theory for such equations for p,q(1,)p,q\in (1, \infty). In the final section we extend a well-posedness result for quasilinear equations to the time-dependent setting. Here we give an example of a nonlinear parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication in Potential Analysi

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore