44 research outputs found

    Multifractal burst in the spatio-temporal dynamics of jerky flow

    Full text link
    The collective behavior of dislocations in jerky flow is studied in Al-Mg polycrystalline samples subjected to constant strain rate tests. Complementary dynamical, statistical and multifractal analyses are carried out on the stress-time series recorded during jerky flow to characterize the distinct spatio-temporal dynamical regimes. It is shown that the hopping type B and the propagating type A bands correspond to chaotic and self-organized critical states respectively. The crossover between these types of bands is identified by a large spread in the multifractal spectrum. These results are interpreted on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001

    High order amplitude equation for steps on creep curve

    Full text link
    We consider a model proposed by one of the authors for a type of plastic instability found in creep experiments which reproduces a number of experimentally observed features. The model consists of three coupled non-linear differential equations describing the evolution of three types of dislocations. The transition to the instability has been shown to be via Hopf bifurcation leading to limit cycle solutions with respect to physically relevant drive parameters. Here we use reductive perturbative method to extract an amplitude equation of up to seventh order to obtain an approximate analytic expression for the order parameter. The analysis also enables us to obtain the bifurcation (phase) diagram of the instability. We find that while supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually takes over at one end of the region. These results are compared with the known experimental results. Approximate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their corresponding numerical solutions of the equations describing the model. The analysis also shows that high order nonlinearities are important in the problem. This approach further allows us to map the theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.

    Sphingolipids as cell fate regulators in lung development and disease

    Get PDF
    corecore